IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics0360544221011981.html
   My bibliography  Save this article

Prediction of residential district heating load based on machine learning: A case study

Author

Listed:
  • Wei, Ziqing
  • Zhang, Tingwei
  • Yue, Bao
  • Ding, Yunxiao
  • Xiao, Ran
  • Wang, Ruzhu
  • Zhai, Xiaoqiang

Abstract

Heating load prediction plays an important role in supporting the operation of a residential district energy station. To find out the most suitable prediction algorithm, seven popular machine learning algorithms are applied in a district heating load dataset from Shanghai, China. The data derived from electric power sensor, thermal sensor and meteorological sensor, weather forecast are combined into four input selections to evaluate model performance. Research on the length setting of prediction time horizon for prediction target and the length of historical time series data for input selection are also conducted to investigate corresponding performance changes. The results show that Support Vector Regression (SVR) performs best in Mean Average Percentage Error (MAPE) with 5.21%. XGBoost performs best in Root Mean Square Error (RMSE) with 59.75 kW. However, SVR, XGBoost and Long Short Term Memory neural network (LSTM) have similar performance. Further investigation shows that the consistent increase in the length of historical data sets does not help to improve the performance. The length of historical data sets is recommended to be 28 h. Meanwhile, the span of prediction horizon has slight influence on the performance. It is also found that model performance is primarily influenced by the weather forecasting data.

Suggested Citation

  • Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011981
    DOI: 10.1016/j.energy.2021.120950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221011981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Jihao & Wang, Jin & Qi, Chengying & Min, Chunhua & Sundén, Bengt, 2018. "Medium-term heat load prediction for an existing residential building based on a wireless on-off control system," Energy, Elsevier, vol. 152(C), pages 709-718.
    2. Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
    3. Chen, Yibo & Tan, Hongwei, 2017. "Short-term prediction of electric demand in building sector via hybrid support vector regression," Applied Energy, Elsevier, vol. 204(C), pages 1363-1374.
    4. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    5. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    6. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    7. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Data fusion in predicting internal heat gains for office buildings through a deep learning approach," Applied Energy, Elsevier, vol. 240(C), pages 386-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    2. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    3. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Huang, Guizao & Wu, Guangning & Yang, Zefeng & Chen, Xing & Wei, Wenfu, 2023. "Development of surrogate models for evaluating energy transfer quality of high-speed railway pantograph-catenary system using physics-based model and machine learning," Applied Energy, Elsevier, vol. 333(C).
    5. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    6. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei & Zhou, Zhihua, 2022. "Evaluation of the operation data for improving the prediction accuracy of heating parameters in heating substation," Energy, Elsevier, vol. 238(PB).
    7. Zhengchao Xie & Xiao Wang & Lijun Zheng & Hao Chang & Fei Wang, 2022. "A Period-Based Neural Network Algorithm for Predicting Building Energy Consumption of District Heating," Energies, MDPI, vol. 15(17), pages 1-22, August.
    8. Mingping Liu & Xihao Sun & Qingnian Wang & Suhui Deng, 2022. "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model," Energies, MDPI, vol. 15(19), pages 1-22, September.
    9. Huang, Zhiwen & Li, Tong & Huang, Kexin & Ke, Hanbing & Lin, Mei & Wang, Qiuwang, 2022. "Predictions of flow and temperature fields in a T-junction based on dynamic mode decomposition and deep learning," Energy, Elsevier, vol. 261(PA).
    10. Liu, Zhikai & Zhang, Huan & Wang, Yaran & Song, Zixu & You, Shijun & Jiang, Yan & Wu, Zhangxiang, 2022. "A thermal-hydraulic coupled simulation approach for the temperature and flow rate control strategy evaluation of the multi-room radiator heating system," Energy, Elsevier, vol. 246(C).
    11. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
    12. Zhou, Yanting & Ma, Zhongjing & Zhang, Jinhui & Zou, Suli, 2022. "Data-driven stochastic energy management of multi energy system using deep reinforcement learning," Energy, Elsevier, vol. 261(PA).
    13. Chung, Won Hee & Gu, Yeong Hyeon & Yoo, Seong Joon, 2022. "District heater load forecasting based on machine learning and parallel CNN-LSTM attention," Energy, Elsevier, vol. 246(C).
    14. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
    15. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    16. Yue, Bao & Wei, Ziqing & Zheng, Chunyuan & Ding, Yunxiao & Li, Bin & Li, Dongdong & Liang, Xingang & Zhai, Xiaoqiang, 2023. "Power consumption prediction of variable refrigerant flow system through data-physics hybrid approach: An online prediction test in office building," Energy, Elsevier, vol. 278(PA).
    17. Nadia Jahanafroozi & Saman Shokrpour & Fatemeh Nejati & Omrane Benjeddou & Mohammad Worya Khordehbinan & Afshin Marani & Moncef L. Nehdi, 2022. "New Heuristic Methods for Sustainable Energy Performance Analysis of HVAC Systems," Sustainability, MDPI, vol. 14(21), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    2. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    3. Zhang, Xu & Sun, Yongjun & Gao, Dian-ce & Zou, Wenke & Fu, Jianping & Ma, Xiaowen, 2022. "Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information," Applied Energy, Elsevier, vol. 327(C).
    4. Liu, Jiangyan & Zhang, Qing & Dong, Zhenxiang & Li, Xin & Li, Guannan & Xie, Yi & Li, Kuining, 2021. "Quantitative evaluation of the building energy performance based on short-term energy predictions," Energy, Elsevier, vol. 223(C).
    5. Manoj Manivannan & Behzad Najafi & Fabio Rinaldi, 2017. "Machine Learning-Based Short-Term Prediction of Air-Conditioning Load through Smart Meter Analytics," Energies, MDPI, vol. 10(11), pages 1-17, November.
    6. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    7. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    8. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    9. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    10. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    12. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Das, Anooshmita & Annaqeeb, Masab Khalid & Azar, Elie & Novakovic, Vojislav & Kjærgaard, Mikkel Baun, 2020. "Occupant-centric miscellaneous electric loads prediction in buildings using state-of-the-art deep learning methods," Applied Energy, Elsevier, vol. 269(C).
    14. Zhang, Yunfei & Zhou, Zhihua & Du, Yahui & Shen, Jun & Li, Zhenxing & Yuan, Jianjuan, 2023. "A data transfer method based on one dimensional convolutional neural network for cross-building load prediction," Energy, Elsevier, vol. 277(C).
    15. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    16. Tan, Daniel & Suvarna, Manu & Shee Tan, Yee & Li, Jie & Wang, Xiaonan, 2021. "A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing," Applied Energy, Elsevier, vol. 291(C).
    17. Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Short-term electric load forecasting for buildings using logistic mixture vector autoregressive model with curve registration," Applied Energy, Elsevier, vol. 282(PB).
    18. William Mounter & Chris Ogwumike & Huda Dawood & Nashwan Dawood, 2021. "Machine Learning and Data Segmentation for Building Energy Use Prediction—A Comparative Study," Energies, MDPI, vol. 14(18), pages 1-42, September.
    19. Mateo Jesper & Felix Pag & Klaus Vajen & Ulrike Jordan, 2022. "Heat Load Profiles in Industry and the Tertiary Sector: Correlation with Electricity Consumption and Ex Post Modeling," Sustainability, MDPI, vol. 14(7), pages 1-32, March.
    20. Zhang, Chaobo & Li, Junyang & Zhao, Yang & Li, Tingting & Chen, Qi & Zhang, Xuejun & Qiu, Weikang, 2021. "Problem of data imbalance in building energy load prediction: Concept, influence, and solution," Applied Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.