Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.113595
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
- Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
- Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, Pierluigi, 2017. "Evaluating the benefits of coordinated emerging flexible resources in electricity markets," Applied Energy, Elsevier, vol. 199(C), pages 142-154.
- Fei Wang & Kangping Li & Xinkang Wang & Lihui Jiang & Jianguo Ren & Zengqiang Mi & Miadreza Shafie-khah & João P. S. Catalão, 2018. "A Distributed PV System Capacity Estimation Approach Based on Support Vector Machine with Customer Net Load Curve Features," Energies, MDPI, vol. 11(7), pages 1-19, July.
- Motalleb, Mahdi & Siano, Pierluigi & Ghorbani, Reza, 2019. "Networked Stackelberg Competition in a Demand Response Market," Applied Energy, Elsevier, vol. 239(C), pages 680-691.
- Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
- Komušanac, Ivan & Ćosić, Boris & Duić, Neven, 2016. "Impact of high penetration of wind and solar PV generation on the country power system load: The case study of Croatia," Applied Energy, Elsevier, vol. 184(C), pages 1470-1482.
- Malof, Jordan M. & Bradbury, Kyle & Collins, Leslie M. & Newell, Richard G., 2016. "Automatic detection of solar photovoltaic arrays in high resolution aerial imagery," Applied Energy, Elsevier, vol. 183(C), pages 229-240.
- Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
- Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
- Wang, Fei & Xu, Hanchen & Xu, Ti & Li, Kangping & Shafie-khah, Miadreza & Catalão, João. P.S., 2017. "The values of market-based demand response on improving power system reliability under extreme circumstances," Applied Energy, Elsevier, vol. 193(C), pages 220-231.
- Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
- Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
- Fei Wang & Kangping Li & Xinkang Wang & Lihui Jiang & Jianguo Ren & Zengqiang Mi & Miadreza Shafie-khah & João P. S. Catalão, 2018. "A Distributed PV System Capacity Estimation Approach Based on Support Vector Machine with Customer Net Load Curve Features," Energies, MDPI, vol. 11(7), pages 1-19, July.
- Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
- Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
- Jinling Lu & Bo Wang & Hui Ren & Daqian Zhao & Fei Wang & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Two-Tier Reactive Power and Voltage Control Strategy Based on ARMA Renewable Power Forecasting Models," Energies, MDPI, vol. 10(10), pages 1-13, October.
- Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
- Sen Wang & Yonghui Sun & Yan Zhou & Rabea Jamil Mahfoud & Dongchen Hou, 2019. "A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM," Energies, MDPI, vol. 13(1), pages 1-17, December.
- Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
- Chan-Uk Yeom & Keun-Chang Kwak, 2017. "Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation," Energies, MDPI, vol. 10(10), pages 1-18, October.
- Hui, Hongxun & Chen, Yulin & Yang, Shaohua & Zhang, Hongcai & Jiang, Tao, 2022. "Coordination control of distributed generators and load resources for frequency restoration in isolated urban microgrids," Applied Energy, Elsevier, vol. 327(C).
- Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
- Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
- Keda Pan & Changhong Xie & Chun Sing Lai & Dongxiao Wang & Loi Lei Lai, 2020. "Photovoltaic Output Power Estimation and Baseline Prediction Approach for a Residential Distribution Network with Behind-the-Meter Systems," Forecasting, MDPI, vol. 2(4), pages 1-18, November.
- Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
- Zhang, Guoqiang & Guo, Jifeng, 2020. "A novel ensemble method for hourly residential electricity consumption forecasting by imaging time series," Energy, Elsevier, vol. 203(C).
- Liu, Jiefeng & Zhang, Zhenhao & Fan, Xianhao & Zhang, Yiyi & Wang, Jiaqi & Zhou, Ke & Liang, Shuo & Yu, Xiaoyong & Zhang, Wei, 2022. "Power system load forecasting using mobility optimization and multi-task learning in COVID-19," Applied Energy, Elsevier, vol. 310(C).
- Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
- Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
- Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
More about this item
Keywords
Customer baseline load; Distributed photovoltaic system; Behind-the-meter; Feature extraction; Net load;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:42. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.