IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019226.html
   My bibliography  Save this article

Lyapunov-based distributed secondary frequency and voltage control for distributed energy resources in islanded microgrids with expected dynamic performance improvement

Author

Listed:
  • Su, Jinshuo
  • Zhang, Hongcai
  • Liu, Hui
  • Liu, Dundun

Abstract

Microgrids (MGs) can effectively integrate the high penetration distributed energy resources (DERs) for the energy and environmental crisis. Still, fluctuations in intermittent DERs may lead to severe frequency and voltage deviations or even the instability of islanded MGs. Secondary control has successfully compensated for the frequency and voltage deviations. Research on secondary control mainly focused on steady-state operating objectives, i.e., frequency and voltage recovery and power sharing. Still, improving the dynamic responses of secondary control is crucial for system-stable operation, especially in the presence of synchronous DERs. This is because these units can cause undesired oscillatory modes, leading to system instability. In addition, because of the line impedance effect, accurate reactive power sharing is usually ignored when voltage recovery is considered. This will lead to an overload of MGs. To improve the dynamics of secondary control while trading off voltage regulation and reactive power sharing, we propose a Lyapunov-Function (LF)–based distributed secondary control strategy. In the proposed LF-based control strategy, the frequency, voltage, and power information are introduced into feedback control based on the Lyapunov stability theorem. Therefore, the improved frequency and voltage deviations and accurate power sharing can be guaranteed when the Lyapunov function asymptotically attenuates to zero. The inherent conflict between voltage regulation and reactive power sharing is addressed by converging the average voltage to the rated reference. Besides, the improved dynamic performance of secondary control is achieved by considering global power variations, which are obtained by distribution-level phasor measurement units. Global power variations can establish control actions to dampen system oscillations and accelerate system restoration. Furthermore, the controller design method based on the Lyapunov stability theorem can naturally promise the stability of the proposed secondary frequency and voltage controllers. Numerical simulations on the IEEE 34-bus system validate that the proposed control strategy can ensure the significantly improved dynamic performance of secondary control while achieving steady-state operation objectives.

Suggested Citation

  • Su, Jinshuo & Zhang, Hongcai & Liu, Hui & Liu, Dundun, 2025. "Lyapunov-based distributed secondary frequency and voltage control for distributed energy resources in islanded microgrids with expected dynamic performance improvement," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019226
    DOI: 10.1016/j.apenergy.2024.124539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    2. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    3. Kandasamy, Jeevitha & Ramachandran, Rajeswari & Veerasamy, Veerapandiyan & Irudayaraj, Andrew Xavier Raj, 2024. "Distributed leader-follower based adaptive consensus control for networked microgrids," Applied Energy, Elsevier, vol. 353(PA).
    4. Hui, Hongxun & Chen, Yulin & Yang, Shaohua & Zhang, Hongcai & Jiang, Tao, 2022. "Coordination control of distributed generators and load resources for frequency restoration in isolated urban microgrids," Applied Energy, Elsevier, vol. 327(C).
    5. Makrygiorgou, Despoina I. & Alexandridis, Antonio T., 2018. "Distributed stabilizing modular control for stand-alone microgrids," Applied Energy, Elsevier, vol. 210(C), pages 925-935.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    2. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    3. Sanath Alahakoon & Rajib Baran Roy & Shantha Jayasinghe Arachchillage, 2023. "Optimizing Load Frequency Control in Standalone Marine Microgrids Using Meta-Heuristic Techniques," Energies, MDPI, vol. 16(13), pages 1-23, June.
    4. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    5. Bhargav Appasani & Amitkumar V. Jha & Deepak Kumar Gupta & Nicu Bizon & Phatiphat Thounthong, 2023. "PSO α : A Fragmented Swarm Optimisation for Improved Load Frequency Control of a Hybrid Power System Using FOPID," Energies, MDPI, vol. 16(5), pages 1-17, February.
    6. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    7. CH. Naga Sai Kalyan & B. Srikanth Goud & Mohit Bajaj & Malligunta Kiran Kumar & Emad M. Ahmed & Salah Kamel, 2022. "Water-Cycle-Algorithm-Tuned Intelligent Fuzzy Controller for Stability of Multi-Area Multi-Fuel Power System with Time Delays," Mathematics, MDPI, vol. 10(3), pages 1-15, February.
    8. Yin, Linfei & Li, Yu, 2022. "Hybrid multi-agent emotional deep Q network for generation control of multi-area integrated energy systems," Applied Energy, Elsevier, vol. 324(C).
    9. Lin, Chengrong & Hu, Bo & Tai, Heng-Ming & Shao, Changzheng & Xie, Kaigui & Wang, Yu, 2024. "Performance optimization of VPP in fast frequency control ancillary service provision," Applied Energy, Elsevier, vol. 376(PB).
    10. Tanima Bal & Saheli Ray & Nidul Sinha & Ramesh Devarapalli & Łukasz Knypiński, 2023. "Integrating Demand Response for Enhanced Load Frequency Control in Micro-Grids with Heating, Ventilation and Air-Conditioning Systems," Energies, MDPI, vol. 16(15), pages 1-23, August.
    11. Latif, Abdul & Hussain, S. M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2021. "Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system," Applied Energy, Elsevier, vol. 282(PA).
    12. Sohrab Mirsaeidi & Subash Devkota & Xiaojun Wang & Dimitrios Tzelepis & Ghulam Abbas & Ahmed Alshahir & Jinghan He, 2022. "A Review on Optimization Objectives for Power System Operation Improvement Using FACTS Devices," Energies, MDPI, vol. 16(1), pages 1-24, December.
    13. Abdul Latif & S. M. Suhail Hussain & Dulal Chandra Das & Taha Selim Ustun, 2020. "Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI ? (1 + ID) Controller for Frequency Response of a Microgrid," Energies, MDPI, vol. 13(13), pages 1-12, July.
    14. Abulanwar, Sayed & Ghanem, Abdelhady & Rizk, Mohammad E.M. & Hu, Weihao, 2021. "Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies," Applied Energy, Elsevier, vol. 304(C).
    15. Ivan Oropeza-Perez & Astrid H Petzold-Rodriguez, 2021. "Different Scenarios for the National Transmission Grid, Considering the Extensive Use of On-Site Renewable Energy in the Mexican Housing Sector," Energies, MDPI, vol. 14(1), pages 1-21, January.
    16. Wang, Xiaobo & Huang, Wentao & Li, Ran & Tai, Nengling & Zong, Ming, 2023. "Frequency-based demand side response considering the discontinuity of the ToU tariff," Applied Energy, Elsevier, vol. 348(C).
    17. Ahmed Fathy & Hegazy Rezk & Seydali Ferahtia & Rania M. Ghoniem & Reem Alkanhel & Mohamed M. Ghoniem, 2022. "A New Fractional-Order Load Frequency Control for Multi-Renewable Energy Interconnected Plants Using Skill Optimization Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    18. Kofinas, P. & Dounis, A.I. & Vouros, G.A., 2018. "Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids," Applied Energy, Elsevier, vol. 219(C), pages 53-67.
    19. Obara, Shin’ya & Fujimoto, Shoki & Sato, Katsuaki & Utsugi, Yuta, 2021. "Planning renewable energy introduction for a microgrid without battery storage," Energy, Elsevier, vol. 215(PB).
    20. Li, Hao & Yang, Ting & Wang, Hengyu & Chen, Yanhong, 2025. "Privacy-preserving distributed secondary voltage control with predefined-time convergence for microgrids," Applied Energy, Elsevier, vol. 378(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.