Numerical investigations of soot generation during wood-log combustion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119841
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Trubetskaya, Anna & Timko, Michael T & Umeki, Kentaro, 2020. "Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents," Applied Energy, Elsevier, vol. 257(C).
- Scharler, Robert & Gruber, Thomas & Ehrenhöfer, Armin & Kelz, Joachim & Bardar, Ramin Mehrabian & Bauer, Thomas & Hochenauer, Christoph & Anca-Couce, Andrés, 2020. "Transient CFD simulation of wood log combustion in stoves," Renewable Energy, Elsevier, vol. 145(C), pages 651-662.
- Böhler, Lukas & Krail, Jürgen & Görtler, Gregor & Kozek, Martin, 2020. "Fuzzy model predictive control for small-scale biomass combustion furnaces," Applied Energy, Elsevier, vol. 276(C).
- Böhler, Lukas & Fallmann, Markus & Görtler, Gregor & Krail, Jürgen & Schittl, Florian & Kozek, Martin, 2021. "Emission limited model predictive control of a small-scale biomass furnace," Applied Energy, Elsevier, vol. 285(C).
- Bach-Oller, Albert & Furusjö, Erik & Umeki, Kentaro, 2019. "On the role of potassium as a tar and soot inhibitor in biomass gasification," Applied Energy, Elsevier, vol. 254(C).
- Cao, Wenhan & Martí-Rosselló, Teresa & Li, Jun & Lue, Leo, 2019. "Prediction of potassium compounds released from biomass during combustion," Applied Energy, Elsevier, vol. 250(C), pages 1696-1705.
- Trubetskaya, Anna & Brown, Avery & Tompsett, Geoffrey A. & Timko, Michael T. & Kling, Jens & Broström, Markus & Andersen, Mogens Larsen & Umeki, Kentaro, 2018. "Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols," Applied Energy, Elsevier, vol. 212(C), pages 1489-1500.
- Anca-Couce, Andrés & Caposciutti, Gianluca & Gruber, Thomas & Kelz, Joachim & Bauer, Thomas & Hochenauer, Christoph & Scharler, Robert, 2019. "Single large wood log conversion in a stove: Experiments and modelling," Renewable Energy, Elsevier, vol. 143(C), pages 890-897.
- Venturini, Elisa & Vassura, Ivano & Zanetti, Cristian & Pizzi, Andrea & Toscano, Giuseppe & Passarini, Fabrizio, 2015. "Evaluation of non-steady state condition contribution to the total emissions of residential wood pellet stove," Energy, Elsevier, vol. 88(C), pages 650-657.
- Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
- Ferreiro, A.I. & Segurado, R. & Costa, M., 2020. "Modelling soot formation during biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Du, Yifan & Lin, Weigang & Glarborg, Peter, 2021. "Particulate emissions from a modern wood stove – Influence of KCl," Renewable Energy, Elsevier, vol. 170(C), pages 1215-1227.
- He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Trubetskaya, Anna & Souihi, Nabil & Umeki, Kentaro, 2019. "Categorization of tars from fast pyrolysis of pure lignocellulosic compounds at high temperature," Renewable Energy, Elsevier, vol. 141(C), pages 751-759.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Runmin & Song, Xudong & Guo, Qinghua & Liu, Dong & Wei, Juntao & Wang, Jiaofei & Bai, Yonghui & Yu, Guangsuo, 2023. "Study on the application of laser diagnosis technology in the rapid real time measurement of soot," Applied Energy, Elsevier, vol. 350(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Čespiva, Jakub & Wnukowski, Mateusz & Niedzwiecki, Lukasz & Skřínský, Jan & Vereš, Ján & Ochodek, Tadeáš & Pawlak-Kruczek, Halina & Borovec, Karel, 2020. "Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime," Renewable Energy, Elsevier, vol. 159(C), pages 775-785.
- Alejandro Lyons Cerón & Alar Konist & Heidi Lees & Oliver Järvik, 2021. "Effect of Woody Biomass Gasification Process Conditions on the Composition of the Producer Gas," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
- Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
- Trubetskaya, Anna & Timko, Michael T & Umeki, Kentaro, 2020. "Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents," Applied Energy, Elsevier, vol. 257(C).
- Anca-Couce, A. & Hochenauer, C. & Scharler, R., 2021. "Bioenergy technologies, uses, market and future trends with Austria as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Ferreiro, A.I. & Segurado, R. & Costa, M., 2020. "Modelling soot formation during biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
- Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
- Li, Dun & Gao, Jianmin & Zhao, Ziqi & Du, Qian & Dong, Heming & Cui, Zhaoyang, 2022. "Effects of iron on coal pyrolysis-derived soot formation," Energy, Elsevier, vol. 249(C).
- Michela Costa & Maurizio La Villetta & Daniele Piazzullo & Domenico Cirillo, 2021. "A Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design," Energies, MDPI, vol. 14(14), pages 1-29, July.
- Buentello-Montoya, David & Zhang, Xiaolei & Li, Jun & Ranade, Vivek & Marques, Simão & Geron, Marco, 2020. "Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure," Applied Energy, Elsevier, vol. 259(C).
- Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
- Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
- Surup, Gerrit Ralf & Hunt, Andrew J. & Attard, Thomas & Budarin, Vitaliy L. & Forsberg, Fredrik & Arshadi, Mehrdad & Abdelsayed, Victor & Shekhawat, Dushyant & Trubetskaya, Anna, 2020. "The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries," Energy, Elsevier, vol. 193(C).
- Jiang, Yuan & Zong, Peijie & Bao, Yuan & Zhang, Xin & Wei, Haixin & Tian, Bin & Tian, Yuanyu & Qiao, Yingyun & Zhang, Juntao, 2022. "Catalytic conversion of gaseous tar using coal char catalyst in the two-stage downer reactor," Energy, Elsevier, vol. 242(C).
- Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
- Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
- Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
- Kalina, Jacek, 2017. "Techno-economic assessment of small-scale integrated biomass gasification dual fuel combined cycle power plant," Energy, Elsevier, vol. 141(C), pages 2499-2507.
More about this item
Keywords
Soot formation; Wood stove; Wood log combustion; Thermally-thick;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011102. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.