IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919311626.html
   My bibliography  Save this article

On the role of potassium as a tar and soot inhibitor in biomass gasification

Author

Listed:
  • Bach-Oller, Albert
  • Furusjö, Erik
  • Umeki, Kentaro

Abstract

The work investigates in a drop tube furnace the effect of potassium on carbon conversion for three different types of fuels: an ash lean stemwood, a calcium-rich bark and a silicon-rich straw. The study focuses on an optimal method for impregnating the biomass with potassium. The experiments are conducted for 3 different impregnation methods; wet impregnation, spray impregnation, and dry mixing to investigate different levels of contact between the fuel and the potassium. Potassium is found to catalyse both homogenous and heterogeneous reactions. All the impregnation methods showed a significant effect of potassium on heterogeneous reactions (char conversion). The fact that dry mixing of potassium in the biomass shows an effect reveals the existence of a gas-induced mechanism that supply and distributes potassium on the char particles. Concerning the effect of potassium on homogenous reactions, it is found that potassium in the gas phase leads to much lower yields of C2 hydrocarbons, heavy tars and soot. The results indicate that potassium reduces the likelihood of light aromatic to progress toward heavier polyaromatic hydrocarbons clusters, thereby inhibiting the formation of soot-like material. A moderate interaction between the added potassium and the inherent ash forming elements is also observed: Potassium has a smaller effect when the fuel is naturally rich in silicon. The combined results are of interest for the design of a gasification process that incorporates recirculation of naturally occurring potassium to improve entrained flow gasification of biomass.

Suggested Citation

  • Bach-Oller, Albert & Furusjö, Erik & Umeki, Kentaro, 2019. "On the role of potassium as a tar and soot inhibitor in biomass gasification," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919311626
    DOI: 10.1016/j.apenergy.2019.113488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carvalho, Lara & Furusjö, Erik & Ma, Chunyan & Ji, Xiaoyan & Lundgren, Joakim & Hedlund, Jonas & Grahn, Mattias & Öhrman, Olov G.W. & Wetterlund, Elisabeth, 2018. "Alkali enhanced biomass gasification with in situ S capture and a novel syngas cleaning. Part 2: Techno-economic assessment," Energy, Elsevier, vol. 165(PB), pages 471-482.
    2. Lin, Leteng & Strand, Michael, 2013. "Investigation of the intrinsic CO2 gasification kinetics of biomass char at medium to high temperatures," Applied Energy, Elsevier, vol. 109(C), pages 220-228.
    3. Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
    4. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    5. Furusjö, Erik & Ma, Chunyan & Ji, Xiaoyan & Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Alkali enhanced biomass gasification with in situ S capture and novel syngas cleaning. Part 1: Gasifier performance," Energy, Elsevier, vol. 157(C), pages 96-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Tao & Sjöblom, Jonas & Ström, Henrik, 2022. "Numerical investigations of soot generation during wood-log combustion," Applied Energy, Elsevier, vol. 325(C).
    2. Ferreiro, A.I. & Segurado, R. & Costa, M., 2020. "Modelling soot formation during biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    2. Čespiva, Jakub & Wnukowski, Mateusz & Niedzwiecki, Lukasz & Skřínský, Jan & Vereš, Ján & Ochodek, Tadeáš & Pawlak-Kruczek, Halina & Borovec, Karel, 2020. "Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime," Renewable Energy, Elsevier, vol. 159(C), pages 775-785.
    3. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    4. Moon, Hyeong-Bin & Lee, Ji-Hwan & Kim, Hyung-Tae & Lee, Jin-Wook & Lee, Byoung-Hwa & Jeon, Chung-Hwan, 2024. "Effect of high-pressure pyrolysis on syngas and char structure of petroleum coke," Energy, Elsevier, vol. 299(C).
    5. Michela Costa & Maurizio La Villetta & Daniele Piazzullo & Domenico Cirillo, 2021. "A Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design," Energies, MDPI, vol. 14(14), pages 1-29, July.
    6. Carvalho, Lara & Furusjö, Erik & Ma, Chunyan & Ji, Xiaoyan & Lundgren, Joakim & Hedlund, Jonas & Grahn, Mattias & Öhrman, Olov G.W. & Wetterlund, Elisabeth, 2018. "Alkali enhanced biomass gasification with in situ S capture and a novel syngas cleaning. Part 2: Techno-economic assessment," Energy, Elsevier, vol. 165(PB), pages 471-482.
    7. Buentello-Montoya, David & Zhang, Xiaolei & Li, Jun & Ranade, Vivek & Marques, Simão & Geron, Marco, 2020. "Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure," Applied Energy, Elsevier, vol. 259(C).
    8. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    9. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    10. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    11. Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
    12. He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Jiang, Yuan & Zong, Peijie & Bao, Yuan & Zhang, Xin & Wei, Haixin & Tian, Bin & Tian, Yuanyu & Qiao, Yingyun & Zhang, Juntao, 2022. "Catalytic conversion of gaseous tar using coal char catalyst in the two-stage downer reactor," Energy, Elsevier, vol. 242(C).
    14. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    15. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    16. Kalina, Jacek, 2017. "Techno-economic assessment of small-scale integrated biomass gasification dual fuel combined cycle power plant," Energy, Elsevier, vol. 141(C), pages 2499-2507.
    17. Elsaddik, Majd & Nzihou, Ange & Delmas, Michel & Delmas, Guo-Hua, 2023. "Steam gasification of cellulose pulp char: Insights on experimental and kinetic study with a focus on the role of Silicon," Energy, Elsevier, vol. 271(C).
    18. Chen, Tao & Sjöblom, Jonas & Ström, Henrik, 2022. "Numerical investigations of soot generation during wood-log combustion," Applied Energy, Elsevier, vol. 325(C).
    19. Muhammad Yousaf Arshad & Muhammad Azam Saeed & Muhammad Wasim Tahir & Halina Pawlak-Kruczek & Anam Suhail Ahmad & Lukasz Niedzwiecki, 2023. "Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor," Energies, MDPI, vol. 16(15), pages 1-26, August.
    20. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919311626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.