IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics030626192400432x.html
   My bibliography  Save this article

Enhancing stability of electric-steam integrated energy systems by integrating steam accumulator

Author

Listed:
  • Guan, Aobo
  • Zhou, Suyang
  • Gu, Wei
  • Chen, Jinyi
  • Lv, Hongkun
  • Fang, Yunhui
  • Xv, Jie

Abstract

Electric-Steam Integrated Energy Systems (ES-IES) have garnered considerable attention in industrial applications due to their high energy utilization efficiency and energy density. Nonetheless, the limited thermal storage capacity of the steam system impacts the stability of ES-IES, posing a challenge for its implementation in scenarios with a high proportion of renewable energy sources. To address this limitation, this study demonstrates how the integration of a Steam Accumulator (SA) can enhance the stability of ES-IES through a dynamic simulation-based approach. Firstly, a novel method for simulating the steam system is introduced. This method utilizes a resolution-adaptive strategy based on the central implicit difference format to balance simulation accuracy and speed. Furthermore, a simulation framework for ES-IES is delineated, detailing the solution order of subsystems and system coupling interface parameter interaction method. Meanwhile, a comprehensive model and solution for the SA are proposed, aligning well with the aforementioned ES-IES simulation methods in terms of accuracy and complexity. Finally, case study demonstrated that equipping SA in ES-IES can effectively reduce its fault-recovery time by 57.9%, highlighting the efficacy of SA in promoting system stability and security.

Suggested Citation

  • Guan, Aobo & Zhou, Suyang & Gu, Wei & Chen, Jinyi & Lv, Hongkun & Fang, Yunhui & Xv, Jie, 2024. "Enhancing stability of electric-steam integrated energy systems by integrating steam accumulator," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s030626192400432x
    DOI: 10.1016/j.apenergy.2024.123049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400432X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).
    2. Yao, Shuai & Gu, Wei & Wu, Jianzhong & Lu, Hai & Zhang, Suhan & Zhou, Yue & Lu, Shuai, 2022. "Dynamic energy flow analysis of the heat-electricity integrated energy systems with a novel decomposition-iteration algorithm," Applied Energy, Elsevier, vol. 322(C).
    3. Gao, Xian & Knueven, Bernard & Siirola, John D. & Miller, David C. & Dowling, Alexander W., 2022. "Multiscale simulation of integrated energy system and electricity market interactions," Applied Energy, Elsevier, vol. 316(C).
    4. Khorsand, Hosein & Seifi, Ali Reza, 2018. "Probabilistic energy flow for multi-carrier energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 989-997.
    5. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    6. Guan, Aobo & Zhou, Suyang & Gu, Wei & Liu, Zhong & Liu, Hengmen, 2022. "A novel dynamic simulation approach for Gas-Heat-Electric coupled system," Applied Energy, Elsevier, vol. 315(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    3. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    4. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2024. "Passivity-based control of fluid flow networks with capacitance," Energy, Elsevier, vol. 299(C).
    5. Boghetti, Roberto & Kämpf, Jérôme H., 2024. "Verification of an open-source Python library for the simulation of district heating networks with complex topologies," Energy, Elsevier, vol. 290(C).
    6. He, Ke-Lun & Zhao, Tian & Ma, Huan & Chen, Qun, 2023. "Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems," Energy, Elsevier, vol. 274(C).
    7. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    8. Licklederer, Thomas & Hamacher, Thomas & Kramer, Michael & Perić, Vedran S., 2021. "Thermohydraulic model of Smart Thermal Grids with bidirectional power flow between prosumers," Energy, Elsevier, vol. 230(C).
    9. Xianyang Cui & Yulong Liu & Ding Yuan & Tao Jin & Mohamed A. Mohamed, 2023. "A Hierarchical Coordinated Control Strategy for Power Quality Improvement in Energy Router Integrated Active Distribution Networks," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    10. Lei, Shunbo & Pozo, David & Wang, Ming-Hao & Li, Qifeng & Li, Yupeng & Peng, Chaoyi, 2022. "Power economic dispatch against extreme weather conditions: The price of resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Melillo, Andreas & Durrer, Roman & Worlitschek, Jörg & Schütz, Philipp, 2020. "First results of remote building characterisation based on smart meter measurement data," Energy, Elsevier, vol. 200(C).
    12. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    13. Guelpa, Elisa & Marincioni, Ludovica & Capone, Martina & Deputato, Stefania & Verda, Vittorio, 2019. "Thermal load prediction in district heating systems," Energy, Elsevier, vol. 176(C), pages 693-703.
    14. Leonidas Zouloumis & Angelos Karanasos & Nikolaos Ploskas & Giorgos Panaras, 2023. "Multicriteria Design and Operation Optimization of a Solar-Assisted Geothermal Heat Pump System," Energies, MDPI, vol. 16(3), pages 1-16, January.
    15. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Lahdelma, Risto, 2023. "Discrete event simulation for dynamic thermal modelling of district heating pipe," Energy, Elsevier, vol. 285(C).
    17. Yu Huang & Shuqin Li & Peng Ding & Yan Zhang & Kai Yang & Weiting Zhang, 2019. "Optimal Operation for Economic and Exergetic Objectives of a Multiple Energy Carrier System Considering Demand Response Program," Energies, MDPI, vol. 12(20), pages 1-21, October.
    18. Zhuang, Wennan & Zhou, Suyang & Chen, Jinyi & Gu, Wei, 2024. "Operation optimization of electricity-steam coupled industrial energy system considering steam accumulator," Energy, Elsevier, vol. 289(C).
    19. Pinto, Edwin S. & Gronier, Timothé & Franquet, Erwin & Serra, Luis M., 2023. "Opportunities and economic assessment for a third-party delivering electricity, heat and cold to residential buildings," Energy, Elsevier, vol. 272(C).
    20. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s030626192400432x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.