IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3388-d263443.html
   My bibliography  Save this article

Backbone—An Adaptable Energy Systems Modelling Framework

Author

Listed:
  • Niina Helistö

    (Smart Energy and Transport Solutions, VTT Technical Research Centre of Finland Ltd, FI-02044 VTT Espoo, Finland)

  • Juha Kiviluoma

    (Smart Energy and Transport Solutions, VTT Technical Research Centre of Finland Ltd, FI-02044 VTT Espoo, Finland
    School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland)

  • Jussi Ikäheimo

    (Smart Energy and Transport Solutions, VTT Technical Research Centre of Finland Ltd, FI-02044 VTT Espoo, Finland)

  • Topi Rasku

    (Smart Energy and Transport Solutions, VTT Technical Research Centre of Finland Ltd, FI-02044 VTT Espoo, Finland)

  • Erkka Rinne

    (Smart Energy and Transport Solutions, VTT Technical Research Centre of Finland Ltd, FI-02044 VTT Espoo, Finland)

  • Ciara O’Dwyer

    (School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland)

  • Ran Li

    (School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland)

  • Damian Flynn

    (School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland)

Abstract

Backbone represents a highly adaptable energy systems modelling framework, which can be utilised to create models for studying the design and operation of energy systems, both from investment planning and scheduling perspectives. It includes a wide range of features and constraints, such as stochastic parameters, multiple reserve products, energy storage units, controlled and uncontrolled energy transfers, and, most significantly, multiple energy sectors. The formulation is based on mixed-integer programming and takes into account unit commitment decisions for power plants and other energy conversion facilities. Both high-level large-scale systems and fully detailed smaller-scale systems can be appropriately modelled. The framework has been implemented as the open-source Backbone modelling tool using General Algebraic Modeling System (GAMS). An application of the framework is demonstrated using a power system example, and Backbone is shown to produce results comparable to a commercial tool. However, the adaptability of Backbone further enables the creation and solution of energy systems models relatively easily for many different purposes and thus it improves on the available methodologies.

Suggested Citation

  • Niina Helistö & Juha Kiviluoma & Jussi Ikäheimo & Topi Rasku & Erkka Rinne & Ciara O’Dwyer & Ran Li & Damian Flynn, 2019. "Backbone—An Adaptable Energy Systems Modelling Framework," Energies, MDPI, vol. 12(17), pages 1-34, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3388-:d:263443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3388/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3388/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Messner, S. & Golodnikov, A. & Gritsevskii, A., 1996. "A stochastic version of the dynamic linear programming model MESSAGE III," Energy, Elsevier, vol. 21(9), pages 775-784.
    2. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
    3. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    4. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    5. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    6. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    7. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    8. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
    9. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    10. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
    11. Manzoor, Davood & Aryanpur, Vahid, 2017. "Power sector development in Iran: A retrospective optimization approach," Energy, Elsevier, vol. 140(P1), pages 330-339.
    12. Warren B. Powell & Abraham George & Hugo Simão & Warren Scott & Alan Lamont & Jeffrey Stewart, 2012. "SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 665-682, November.
    13. Pfenninger, Stefan & DeCarolis, Joseph & Hirth, Lion & Quoilin, Sylvain & Staffell, Iain, 2017. "The importance of open data and software: Is energy research lagging behind?," Energy Policy, Elsevier, vol. 101(C), pages 211-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasku, Topi & Miettinen, Jari & Rinne, Erkka & Kiviluoma, Juha, 2020. "Impact of 15-day energy forecasts on the hydro-thermal scheduling of a future Nordic power system," Energy, Elsevier, vol. 192(C).
    2. Luigi Bottecchia & Pietro Lubello & Pietro Zambelli & Carlo Carcasci & Lukas Kranzl, 2021. "The Potential of Simulating Energy Systems: The Multi Energy Systems Simulator Model," Energies, MDPI, vol. 14(18), pages 1-27, September.
    3. Luo, Yilun & Ahmadi, Esmaeil & McLellan, Benjamin Craig & Tezuka, Tetsuo, 2024. "A hybrid system dynamics model for power mix trajectory simulation in liberalized electricity markets considering carbon and capacity policy," Renewable Energy, Elsevier, vol. 233(C).
    4. Lisa Göransson, 2023. "Balancing Electricity Supply and Demand in a Carbon-Neutral Northern Europe," Energies, MDPI, vol. 16(8), pages 1-27, April.
    5. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    6. Finke, Jonas & Bertsch, Valentin & Di Cosmo, Valeria, 2023. "Exploring the feasibility of Europe’s renewable expansion plans based on their profitability in the market," Energy Policy, Elsevier, vol. 177(C).
    7. Luis Montero & Antonio Bello & Javier Reneses, 2020. "A New Methodology to Obtain a Feasible Thermal Operation in Power Systems in a Medium-Term Horizon," Energies, MDPI, vol. 13(12), pages 1-17, June.
    8. Rämä, Miika & Pursiheimo, Esa & Sundell, Dennis & Abdurafikov, Rinat, 2024. "Dynamically distributed district heating for an existing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    10. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    11. Liu, Qipeng & Li, Ran & Dereli, Recep Kaan & Flynn, Damian & Casey, Eoin, 2022. "Water resource recovery facilities as potential energy generation units and their dynamic economic dispatch," Applied Energy, Elsevier, vol. 318(C).
    12. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    13. Huckebrink, David & Bertsch, Valentin, 2022. "Decarbonising the residential heating sector: A techno-economic assessment of selected technologies," Energy, Elsevier, vol. 257(C).
    14. Plaga, Leonie Sara & Lynch, Muireann & Curtis, John & Bertsch, Valentin, 2024. "How public acceptance affects power system development—A cross-country analysis for wind power," Applied Energy, Elsevier, vol. 359(C).
    15. Gao, Xian & Knueven, Bernard & Siirola, John D. & Miller, David C. & Dowling, Alexander W., 2022. "Multiscale simulation of integrated energy system and electricity market interactions," Applied Energy, Elsevier, vol. 316(C).
    16. Helistö, Niina & Kiviluoma, Juha & Reittu, Hannu, 2020. "Selection of representative slices for generation expansion planning using regular decomposition," Energy, Elsevier, vol. 211(C).
    17. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    18. Ikäheimo, Jussi & Lindroos, Tomi J. & Kiviluoma, Juha, 2023. "Impact of climate and geological storage potential on feasibility of hydrogen fuels," Applied Energy, Elsevier, vol. 342(C).
    19. Kumar, Shravan & Thakur, Jagruti & Gardumi, Francesco, 2022. "Techno-economic modelling and optimisation of excess heat and cold recovery for industries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    2. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    3. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    6. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    8. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    9. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
    10. Luis Montero & Antonio Bello & Javier Reneses, 2020. "A New Methodology to Obtain a Feasible Thermal Operation in Power Systems in a Medium-Term Horizon," Energies, MDPI, vol. 13(12), pages 1-17, June.
    11. Ogunmodede, Oluwaseun & Anderson, Kate & Cutler, Dylan & Newman, Alexandra, 2021. "Optimizing design and dispatch of a renewable energy system," Applied Energy, Elsevier, vol. 287(C).
    12. Zhu, K. & Victoria, M. & Andresen, G.B. & Greiner, M., 2020. "Impact of climatic, technical and economic uncertainties on the optimal design of a coupled fossil-free electricity, heating and cooling system in Europe," Applied Energy, Elsevier, vol. 262(C).
    13. Henke, Hauke T.J. & Gardumi, Francesco & Howells, Mark, 2022. "The open source electricity Model Base for Europe - An engagement framework for open and transparent European energy modelling," Energy, Elsevier, vol. 239(PA).
    14. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    15. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
    17. Felix Lippkau & David Franzmann & Thushara Addanki & Patrick Buchenberg & Heidi Heinrichs & Philipp Kuhn & Thomas Hamacher & Markus Blesl, 2023. "Global Hydrogen and Synfuel Exchanges in an Emission-Free Energy System," Energies, MDPI, vol. 16(7), pages 1-20, April.
    18. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Reprint of Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 184(C), pages 1529-1550.
    19. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    20. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3388-:d:263443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.