IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v302y2021ics030626192100948x.html
   My bibliography  Save this article

Capacity expansion planning for wind power and energy storage considering hourly robust transmission constrained unit commitment

Author

Listed:
  • Zhou, Yuzhou
  • Zhai, Qiaozhu
  • Yuan, Wei
  • Wu, Jiang

Abstract

The installed capacity of renewable energy in power systems is rising rapidly in recent years due to environmental pressure. And as the main asset of mitigating renewable output fluctuations, energy storage (ES) also has been greatly developed with the increase of renewable capacity. To this end, the capacity planning of renewables and ESs has drawn much attention and many methods have been proposed. In the formulations of capacity planning problems, more detailed and complicated operation constraints mean more accurate planning results, which is the consensus of many researchers. However, to guarantee the problem formulation tractable, the actual multistage operation process of power system is not properly considered in existing planning methods. Therefore, in this paper, a new capacity expansion planning method for wind power and ESs is proposed considering the actual multistage operation process of power system. Specially, the hourly robust transmission constrained unit commitment (TCUC) and economic dispatch (ED) are involved in this planning method and thus, it could accurately evaluate the operational cost under certain planning decision. Besides, to guarantee the solvability and computational efficiency of planning method, a parallel horizon-splitting method is improved to solve the long-time-horizon hourly robust TCUC problem, and a genetic algorithm nested gradient descent method is established to accelerate the solving of planning problem. With the actual multistage operation process, a more reasonable expansion planning decision is obtained and the computational efficiency is greatly improved by the proposed acceleration algorithm. Numerical tests verify the efficacy of proposed method.

Suggested Citation

  • Zhou, Yuzhou & Zhai, Qiaozhu & Yuan, Wei & Wu, Jiang, 2021. "Capacity expansion planning for wind power and energy storage considering hourly robust transmission constrained unit commitment," Applied Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:appene:v:302:y:2021:i:c:s030626192100948x
    DOI: 10.1016/j.apenergy.2021.117570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192100948X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poncelet, Kris & Delarue, Erik & D’haeseleer, William, 2020. "Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility," Applied Energy, Elsevier, vol. 258(C).
    2. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    3. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    4. Domínguez, R. & Carrión, M. & Oggioni, G., 2020. "Planning and operating a renewable-dominated European power system under uncertainty," Applied Energy, Elsevier, vol. 258(C).
    5. Ganesan, T. & Elamvazuthi, I. & Ku Shaari, Ku Zilati & Vasant, P., 2013. "Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production," Applied Energy, Elsevier, vol. 103(C), pages 368-374.
    6. Reuter, Wolf Heinrich & Szolgayová, Jana & Fuss, Sabine & Obersteiner, Michael, 2012. "Renewable energy investment: Policy and market impacts," Applied Energy, Elsevier, vol. 97(C), pages 249-254.
    7. Jahangiri, Mehdi & Ghaderi, Reza & Haghani, Ahmad & Nematollahi, Omid, 2016. "Finding the best locations for establishment of solar-wind power stations in Middle-East using GIS: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 38-52.
    8. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    9. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    10. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    11. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    12. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
    13. Mingers, John & Parker, Kim T., 2010. "Should you stop investing in a sinking fund when it is sinking?," European Journal of Operational Research, Elsevier, vol. 207(1), pages 508-513, November.
    14. Mourshed, Monjur, 2016. "Climatic parameters for building energy applications: A temporal-geospatial assessment of temperature indicators," Renewable Energy, Elsevier, vol. 94(C), pages 55-71.
    15. Xie, Shiwei & Hu, Zhijian & Wang, Jueying, 2020. "Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks," Applied Energy, Elsevier, vol. 261(C).
    16. Nguyen, Hieu T. & Felder, Frank A., 2020. "Generation expansion planning with renewable energy credit markets: A bilevel programming approach," Applied Energy, Elsevier, vol. 276(C).
    17. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    18. Zhou, Ying & Wang, Lizhi & McCalley, James D., 2011. "Designing effective and efficient incentive policies for renewable energy in generation expansion planning," Applied Energy, Elsevier, vol. 88(6), pages 2201-2209, June.
    19. Zhao, Bo & Ren, Junzhi & Chen, Jian & Lin, Da & Qin, Ruwen, 2020. "Tri-level robust planning-operation co-optimization of distributed energy storage in distribution networks with high PV penetration," Applied Energy, Elsevier, vol. 279(C).
    20. Álvaro Lorca & X. Andy Sun & Eugene Litvinov & Tongxin Zheng, 2016. "Multistage Adaptive Robust Optimization for the Unit Commitment Problem," Operations Research, INFORMS, vol. 64(1), pages 32-51, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wei & Li Ye & Yi Fang & Yingchun Wang & Xi Chen & Zhenhua Li, 2023. "Optimal Allocation of Energy Storage Capacity in Microgrids Considering the Uncertainty of Renewable Energy Generation," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Bing Sun & Zheng Zhang & Jing Hu & Zihan Meng & Bibin Huang & Nana Li, 2024. "An Energy Storage Capacity Configuration Method for a Provincial Power System Considering Flexible Adjustment of the Tie-Line," Energies, MDPI, vol. 17(1), pages 1-26, January.
    3. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Arévalo, Paul & Turky, Rania A. & Jurado, Francisco, 2022. "A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations," Energy, Elsevier, vol. 253(C).
    4. Abdulaziz Almalaq & Khalid Alqunun & Mohamed M. Refaat & Anouar Farah & Fares Benabdallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Towards Increasing Hosting Capacity of Modern Power Systems through Generation and Transmission Expansion Planning," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    5. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    6. Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).
    7. Adel F. Alrasheedi & Ahmad M. Alshamrani & Khalid A. Alnowibet, 2023. "Investing in Wind Energy Using Bi-Level Linear Fractional Programming," Energies, MDPI, vol. 16(13), pages 1-14, June.
    8. Qiu, Haifeng & Sun, Qirun & Lu, Xi & Beng Gooi, Hoay & Zhang, Suhan, 2022. "Optimality-feasibility-aware multistage unit commitment considering nonanticipative realization of uncertainty," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    2. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    3. Seyed Hamed Jalalzad & Hossein Yektamoghadam & Rouzbeh Haghighi & Majid Dehghani & Amirhossein Nikoofard & Mahdi Khosravy & Tomonobu Senjyu, 2022. "A Game Theory Approach Using the TLBO Algorithm for Generation Expansion Planning by Applying Carbon Curtailment Policy," Energies, MDPI, vol. 15(3), pages 1-16, February.
    4. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    5. Abdin, Adam F. & Caunhye, Aakil & Zio, Enrico & Cardin, Michel-Alexandre, 2022. "Optimizing generation expansion planning with operational uncertainty: A multistage adaptive robust approach," Applied Energy, Elsevier, vol. 306(PA).
    6. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    7. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    8. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    9. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    10. Jadidoleslam, Morteza & Ebrahimi, Akbar & Latify, Mohammad Amin, 2017. "Probabilistic transmission expansion planning to maximize the integration of wind power," Renewable Energy, Elsevier, vol. 114(PB), pages 866-878.
    11. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    12. Nock, Destenie & Levin, Todd & Baker, Erin, 2020. "Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries," Applied Energy, Elsevier, vol. 264(C).
    13. Gu, Chenjia & Wang, Jianxue & Zhang, Yao & Li, Qingtao & Chen, Yang, 2022. "Optimal energy storage planning for stacked benefits in power distribution network," Renewable Energy, Elsevier, vol. 195(C), pages 366-380.
    14. Ranjbar, Hossein & Kazemi, Mostafa & Amjady, Nima & Zareipour, Hamidreza & Hosseini, Seyed Hamid, 2022. "Maximizing the utilization of existing grids for renewable energy integration," Renewable Energy, Elsevier, vol. 189(C), pages 618-629.
    15. Riepin, Iegor & Schmidt, Matthew & Baringo, Luis & Müsgens, Felix, 2022. "Adaptive robust optimization for European strategic gas infrastructure planning," Applied Energy, Elsevier, vol. 324(C).
    16. Quiroga, Daniela & Sauma, Enzo & Pozo, David, 2019. "Power system expansion planning under global and local emission mitigation policies," Applied Energy, Elsevier, vol. 239(C), pages 1250-1264.
    17. Arjun Mahalingam & David Reiner, 2016. "Energy subsidies at times of economic crisis: A comparative study and scenario analysis of Italy and Spain," Cambridge Working Papers in Economics 1608, Faculty of Economics, University of Cambridge.
    18. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    19. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    20. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:302:y:2021:i:c:s030626192100948x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.