IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipbs0306261921014008.html
   My bibliography  Save this article

Transfer-Reinforcement-Learning-Based rescheduling of differential power grids considering security constraints

Author

Listed:
  • Wang, Tianjing
  • Tang, Yong

Abstract

The power system rescheduling based on model-free methods has obvious defects in practical application, such as poor scenario transferability, long data training time, and waste of domain knowledge. To overcome the above defects, a transfer-reinforcement-learning-based rescheduling method of differential power grids considering security constraints is proposed. When constructing the Markov decision-making process of security-constrained rescheduling, both the off-limits of line power and node voltage are considered in the reward. The action space of deep reinforcement learning is narrowed by calculating the sensitivities of devices and mapped to control the active and reactive power regulating devices to reschedule active and reactive power simultaneously. According to the change degree of transfer object, the applications of transfer learning are divided into two scenarios. For the security-constrained rescheduling transfer scenario of different structures of the same power grid, a domain-adaption transfer learning method is formed, realizing good data adaptability after structure changes with the original model. Moreover, a policy-based transfer learning method is constructed for the security-constrained rescheduling transfer scenario of different power grids, enhancing the training speed and training effect of target power grid. Two standard systems and two actual power grids are utilized to verify the effectiveness of the method. For the actual power grids, the effects of the two scenarios are improved by 5.8% and 3.9% with transfer learning. Compared with other methods, this method not only has obvious advantages in transferability, but also has a shorter learning process and lower control cost.

Suggested Citation

  • Wang, Tianjing & Tang, Yong, 2022. "Transfer-Reinforcement-Learning-Based rescheduling of differential power grids considering security constraints," Applied Energy, Elsevier, vol. 306(PB).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014008
    DOI: 10.1016/j.apenergy.2021.118121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaoshun & Chen, Yixuan & Yu, Tao & Yang, Bo & Qu, Kaiping & Mao, Senmao, 2017. "Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems," Applied Energy, Elsevier, vol. 189(C), pages 157-176.
    2. Seck, Gondia Sokhna & Krakowski, Vincent & Assoumou, Edi & Maïzi, Nadia & Mazauric, Vincent, 2020. "Embedding power system’s reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050," Applied Energy, Elsevier, vol. 257(C).
    3. Gondia Sokhna Seck & Vincent Krakowski & Edi Assoumou & Nadia Maïzi & Vincent Mazauric, 2020. "Embedding power system's reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050," Post-Print hal-02418375, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Peng, Pei & Li, Wenqiang & Shi, Xing, 2023. "Cross temporal-spatial transferability investigation of deep reinforcement learning control strategy in the building HVAC system level," Energy, Elsevier, vol. 263(PB).
    2. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Machado, Renato Haddad Simões & Rego, Erik Eduardo & Udaeta, Miguel Edgar Morales & Nascimento, Viviane Tavares, 2022. "Estimating the adequacy revenue considering long-term reliability in a renewable power system," Energy, Elsevier, vol. 243(C).
    2. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    3. Fernandez Vazquez, Carlos A.A. & Vansighen, Thomas & Fernandez Fuentes, Miguel H. & Quoilin, Sylvain, 2024. "Energy transition implications for Bolivia. Long-term modelling with short-term assessment of future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    5. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    6. Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).
    7. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    8. Christos Agathokleous & Jimmy Ehnberg, 2020. "A Quantitative Study on the Requirement for Additional Inertia in the European Power System until 2050 and the Potential Role of Wind Power," Energies, MDPI, vol. 13(9), pages 1-14, May.
    9. Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
    10. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    11. Groissböck, Markus & Gusmão, Alexandre, 2020. "Impact of renewable resource quality on security of supply with high shares of renewable energies," Applied Energy, Elsevier, vol. 277(C).
    12. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.
    14. Fan, Jing-Li & Huang, Xi & Shi, Jie & Li, Kai & Cai, Jingwen & Zhang, Xian, 2023. "Complementary potential of wind-solar-hydro power in Chinese provinces: Based on a high temporal resolution multi-objective optimization model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Nikita Belyak & Steven A. Gabriel & Nikolay Khabarov & Fabricio Oliveira, 2023. "Renewable Energy Expansion under Taxes and Subsidies: A Transmission Operator's Perspective," Papers 2302.10562, arXiv.org, revised Apr 2024.
    16. Wilson Pavon & Manuel Jaramillo & Juan C. Vasquez, 2023. "A Review of Modern Computational Techniques and Their Role in Power System Stability and Control," Energies, MDPI, vol. 17(1), pages 1-17, December.
    17. He, Xinran & Ding, Tao & Zhang, Xiaosheng & Huang, Yuhan & Li, Li & Zhang, Qinglei & Li, Fangxing, 2023. "A robust reliability evaluation model with sequential acceleration method for power systems considering renewable energy temporal-spatial correlation," Applied Energy, Elsevier, vol. 340(C).
    18. Connor Scott & Mominul Ahsan & Alhussein Albarbar, 2021. "Machine Learning Based Vehicle to Grid Strategy for Improving the Energy Performance of Public Buildings," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    19. Oskouei, Morteza Zare & Mohammadi-Ivatloo, Behnam & Abapour, Mehdi & Shafiee, Mahmood & Anvari-Moghaddam, Amjad, 2021. "Privacy-preserving mechanism for collaborative operation of high-renewable power systems and industrial energy hubs," Applied Energy, Elsevier, vol. 283(C).
    20. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.