IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v145y2018icp677-690.html
   My bibliography  Save this article

Understanding energy consumption in high-performance social housing buildings: A case study from Canada

Author

Listed:
  • Rouleau, Jean
  • Gosselin, Louis
  • Blanchet, Pierre

Abstract

This paper presents a case study of a recently built high-performance Canadian social housing building with the aim of comparing the expected and measured energy consumptions and to identify the parameters affecting the most the energy need. A monitoring system compiles at a 10-min frequency information related to the energy use and the thermal conditions observed in the building and its HVAC system. The building has the particularity of comprising two symmetric sections made of different timber structure systems. No significant differences of energy consumption were detected between the two parts of the buildings. However, a large variance was observed when comparing each dwelling individually regardless of their structures. The orientation of the dwelling also exhibited a minimal influence compared to these variations, suggesting that occupant behavior is the dominant factor explaining dwelling-to-dwelling variability and is thus critical for understanding energy use in residential buildings. Regression analysis showed that specific occupant actions, such as opening windows in winter or using electrical appliances, have a great impact on the energy balance of the apartments. In 2016, the performance gap between measured and expected total energy demand of the building was 74%. With the use of the large dataset coming from the building, it was possible to determine the causes behind this large gap for the reference building.

Suggested Citation

  • Rouleau, Jean & Gosselin, Louis & Blanchet, Pierre, 2018. "Understanding energy consumption in high-performance social housing buildings: A case study from Canada," Energy, Elsevier, vol. 145(C), pages 677-690.
  • Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:677-690
    DOI: 10.1016/j.energy.2017.12.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217321503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emery, A.F. & Kippenhan, C.J., 2006. "A long term study of residential home heating consumption and the effect of occupant behavior on homes in the Pacific Northwest constructed according to improved thermal standards," Energy, Elsevier, vol. 31(5), pages 677-693.
    2. Braun, M.R. & Altan, H. & Beck, S.B.M., 2014. "Using regression analysis to predict the future energy consumption of a supermarket in the UK," Applied Energy, Elsevier, vol. 130(C), pages 305-313.
    3. Kneifel, Joshua & Webb, David, 2016. "Predicting energy performance of a net-zero energy building: A statistical approach," Applied Energy, Elsevier, vol. 178(C), pages 468-483.
    4. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    5. Langevin, Jared & Gurian, Patrick L. & Wen, Jin, 2013. "Reducing energy consumption in low income public housing: Interviewing residents about energy behaviors," Applied Energy, Elsevier, vol. 102(C), pages 1358-1370.
    6. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Shiming, Deng & Ma, Zuiliang, 2007. "A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection," Energy, Elsevier, vol. 32(11), pages 2199-2209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rouleau, Jean & Gosselin, Louis, 2021. "Impacts of the COVID-19 lockdown on energy consumption in a Canadian social housing building," Applied Energy, Elsevier, vol. 287(C).
    2. Siti Rosilah Arsad & Muhamad Haziq Hasnul Hadi & Nayli Aliah Mohd Afandi & Pin Jern Ker & Shirley Gee Hoon Tang & Madihah Mohd Afzal & Santhi Ramanathan & Chai Phing Chen & Prajindra Sankar Krishnan &, 2023. "The Impact of COVID-19 on the Energy Sector and the Role of AI: An Analytical Review on Pre- to Post-Pandemic Perspectives," Energies, MDPI, vol. 16(18), pages 1-31, September.
    3. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    4. Maltais, Louis-Gabriel & Gosselin, Louis, 2022. "Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons," Applied Energy, Elsevier, vol. 307(C).
    5. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    6. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    7. Maltais, Louis-Gabriel & Gosselin, Louis, 2021. "Predictability analysis of domestic hot water consumption with neural networks: From single units to large residential buildings," Energy, Elsevier, vol. 229(C).
    8. Maturo, Anthony & Buonomano, Annamaria & Athienitis, Andreas, 2022. "Design for energy flexibility in smart buildings through solar based and thermal storage systems: Modelling, simulation and control for the system optimization," Energy, Elsevier, vol. 260(C).
    9. Shilei Lu & Minchao Fan & Yiqun Zhao, 2018. "A System to Pre-Evaluate the Suitability of Energy-Saving Technology for Green Buildings," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    10. Rouleau, Jean & Gosselin, Louis & Blanchet, Pierre, 2019. "Robustness of energy consumption and comfort in high-performance residential building with respect to occupant behavior," Energy, Elsevier, vol. 188(C).
    11. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    12. Xia Wang & Jiachen Yuan & Kairui You & Xianrui Ma & Zhaoji Li, 2023. "Using Real Building Energy Use Data to Explain the Energy Performance Gap of Energy-Efficient Residential Buildings: A Case Study from the Hot Summer and Cold Winter Zone in China," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    13. Sun, Yannan & Hao, Weituo & Chen, Yan & Liu, Bing, 2020. "Data-driven occupant-behavior analytics for residential buildings," Energy, Elsevier, vol. 206(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
    2. Ahmad, Tanveer & Chen, Huanxin & Huang, Ronggeng & Yabin, Guo & Wang, Jiangyu & Shair, Jan & Azeem Akram, Hafiz Muhammad & Hassnain Mohsan, Syed Agha & Kazim, Muhammad, 2018. "Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment," Energy, Elsevier, vol. 158(C), pages 17-32.
    3. Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
    4. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    5. Seyed Azad Nabavi & Alireza Aslani & Martha A. Zaidan & Majid Zandi & Sahar Mohammadi & Naser Hossein Motlagh, 2020. "Machine Learning Modeling for Energy Consumption of Residential and Commercial Sectors," Energies, MDPI, vol. 13(19), pages 1-22, October.
    6. Di Leo, Senatro & Caramuta, Pietro & Curci, Paola & Cosmi, Carmelina, 2020. "Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models," Energy, Elsevier, vol. 196(C).
    7. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    8. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    10. Maaouane, Mohamed & Zouggar, Smail & Krajačić, Goran & Zahboune, Hassan, 2021. "Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods," Energy, Elsevier, vol. 225(C).
    11. Kneifel, Joshua & Webb, David, 2016. "Predicting energy performance of a net-zero energy building: A statistical approach," Applied Energy, Elsevier, vol. 178(C), pages 468-483.
    12. Ahmed Gassar, Abdo Abdullah & Yun, Geun Young & Kim, Sumin, 2019. "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, Elsevier, vol. 187(C).
    13. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    14. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    15. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    16. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    17. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    18. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    19. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    20. Yapparova, Alina & Matthäi, Stephan & Driesner, Thomas, 2014. "Realistic simulation of an aquifer thermal energy storage: Effects of injection temperature, well placement and groundwater flow," Energy, Elsevier, vol. 76(C), pages 1011-1018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:145:y:2018:i:c:p:677-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.