IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4181-d282792.html
   My bibliography  Save this article

A Novel Prediction Approach for Short-Term Renewable Energy Consumption in China Based on Improved Gaussian Process Regression

Author

Listed:
  • Yuansheng Huang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Lei Yang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Chong Gao

    (School of Economics and Management, North China Electric Power University, Baoding 071003, China)

  • Yuqing Jiang

    (School of Economics and Management, North China Electric Power University, Baoding 071003, China)

  • Yulin Dong

    (School of Economics and Management, North China Electric Power University, Baoding 071003, China)

Abstract

Energy consumption issues are important factors concerning the achievement of sustainable social development and also have a significant impact on energy security, particularly for China whose energy structure is experiencing a transformation. Construction of an accurate and reliable prediction model for the volatility changes in energy consumption can provide valuable reference information for policy makers of the government and for the energy industry. In view of this, a novel improved model is developed in this article by integrating the modified state transition algorithm (MSTA) with the Gaussian processes regression (GPR) approach for non-fossil energy consumption predictions for China at the end of the 13th Five-Year Project, in which the MSTA is utilized for effective optimization of hyper-parameters in GPR. Aiming for validating the superiority of MSTA, several comparisons are conducted on two well-known functions and the optimization results show the effectiveness of modification in the state transition algorithm (STA). Then, based on the latest statistical renewable energy consumption data, the MSTA-GPR model is utilized to generate consumption predictions for overall renewable energy and each single renewable energy source, including hydropower, wind, solar, geothermal, biomass and other energies, respectively. The forecasting results reveal that the proposed improved GPR can promote the forecasting ability of basic GPR and obtain the best prediction effect among all the other comparison models. Finally, combined with the forecasting results, the trend of each renewable energy source is analyzed.

Suggested Citation

  • Yuansheng Huang & Lei Yang & Chong Gao & Yuqing Jiang & Yulin Dong, 2019. "A Novel Prediction Approach for Short-Term Renewable Energy Consumption in China Based on Improved Gaussian Process Regression," Energies, MDPI, vol. 12(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4181-:d:282792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    2. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    3. Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2017. "Recent Advances in Energy Time Series Forecasting," Energies, MDPI, vol. 10(6), pages 1-3, June.
    4. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "A framework for evaluating Singapore’s energy security," Applied Energy, Elsevier, vol. 148(C), pages 314-325.
    5. Steven A. Gabriel & Andy S. Kydes & Peter Whitman, 2001. "The National Energy Modeling System: A Large-Scale Energy-Economic Equilibrium Model," Operations Research, INFORMS, vol. 49(1), pages 14-25, February.
    6. Chang, Youngho & Fang, Zheng & Li, Yanfei, 2016. "Renewable energy policies in promoting financing and investment among the East Asia Summit countries: Quantitative assessment and policy implications," Energy Policy, Elsevier, vol. 95(C), pages 427-436.
    7. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2013. "Sparse online warped Gaussian process for wind power probabilistic forecasting," Applied Energy, Elsevier, vol. 108(C), pages 410-428.
    8. Chen, Junghui & Chan, Lester Lik Teck & Cheng, Yi-Cheng, 2013. "Gaussian process regression based optimal design of combustion systems using flame images," Applied Energy, Elsevier, vol. 111(C), pages 153-160.
    9. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
    10. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    11. Bahrami, Saadat & Hooshmand, Rahmat-Allah & Parastegari, Moein, 2014. "Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm," Energy, Elsevier, vol. 72(C), pages 434-442.
    12. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    13. Pahle, Michael & Pachauri, Shonali & Steinbacher, Karoline, 2016. "Can the Green Economy deliver it all? Experiences of renewable energy policies with socio-economic objectives," Applied Energy, Elsevier, vol. 179(C), pages 1331-1341.
    14. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    15. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    16. Wang, Qiang, 2014. "Effects of urbanisation on energy consumption in China," Energy Policy, Elsevier, vol. 65(C), pages 332-339.
    17. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    18. Liu, Hui & Tian, Hongqi & Liang, Xifeng & Li, Yanfei, 2015. "New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 83(C), pages 1066-1075.
    19. Wang, Jianzhou & Hu, Jianming, 2015. "A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vec," Energy, Elsevier, vol. 93(P1), pages 41-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Meng & Haoyue Wu & Wenjing Zhao & Wenkuan Chen & Hasan Dinçer & Serhat Yüksel, 2021. "A hybrid heterogeneous Pythagorean fuzzy group decision modelling for crowdfunding development process pathways of fintech-based clean energy investment projects," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-34, December.
    2. SK Safdar Hossain & Bamidele Victor Ayodele & Abdulrahman Almithn, 2022. "Predictive Modeling of Bioenergy Production from Fountain Grass Using Gaussian Process Regression: Effect of Kernel Functions," Energies, MDPI, vol. 15(15), pages 1-13, July.
    3. Maltais, Louis-Gabriel & Gosselin, Louis, 2022. "Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    2. Wang, Qiang & Kwan, Mei-Po & Fan, Jie & Zhou, Kan & Wang, Ya-Fei, 2019. "A study on the spatial distribution of the renewable energy industries in China and their driving factors," Renewable Energy, Elsevier, vol. 139(C), pages 161-175.
    3. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    4. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    5. Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
    6. Jianzhong Zhou & Na Sun & Benjun Jia & Tian Peng, 2018. "A Novel Decomposition-Optimization Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 11(7), pages 1-27, July.
    7. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    8. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    9. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    10. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    11. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    13. Wang, Jianzhou & An, Yining & Li, Zhiwu & Lu, Haiyan, 2022. "A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting," Energy, Elsevier, vol. 251(C).
    14. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    15. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    16. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    17. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    18. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    19. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    20. Ahmed Aljanad & Nadia M. L. Tan & Vassilios G. Agelidis & Hussain Shareef, 2021. "Neural Network Approach for Global Solar Irradiance Prediction at Extremely Short-Time-Intervals Using Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4181-:d:282792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.