IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipbs0306261921013659.html
   My bibliography  Save this article

Analyzing the competitiveness of low-carbon drive-technologies in road-freight: A total cost of ownership analysis in Europe

Author

Listed:
  • Noll, Bessie
  • del Val, Santiago
  • Schmidt, Tobias S.
  • Steffen, Bjarne

Abstract

In light of the Paris Agreement, road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets, a rapid transition to zero-carbon road-freight is necessary. However, limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition, this paper examines the relative cost competitiveness between commercial vehicles of varying alternative drive-technologies through a total cost of ownership (TCO) assessment. We identify key parameters that, when targeted, enable the uptake of these more sustainable niche technologies. The assessment is based on a newly compiled database of cost parameters which were triangulated through expert interviews. The results show that cost competitiveness for low- or zero-emission niche technologies in certain application segments and European countries is exhibited already today. In particular, we find battery electric vehicles to show great promise in the light- and medium-duty segments, but also in the heavy-duty long-haul segments in countries that have enacted targeted policy measures. Three TCO parameters drive this competitiveness: tolls, fuel costs, and CAPEX subsidies. Based on our analysis, we propose that policy-makers target OPEX before CAPEX parameters as well utilize a mix of policy interventions to ensure greater reach, increased efficiency, and increased policy flexibility.

Suggested Citation

  • Noll, Bessie & del Val, Santiago & Schmidt, Tobias S. & Steffen, Bjarne, 2022. "Analyzing the competitiveness of low-carbon drive-technologies in road-freight: A total cost of ownership analysis in Europe," Applied Energy, Elsevier, vol. 306(PB).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013659
    DOI: 10.1016/j.apenergy.2021.118079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921013659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fulton, Lew & Cazzola, Pierpaolo & Cuenot, François, 2009. "IEA Mobility Model (MoMo) and its use in the ETP 2008," Energy Policy, Elsevier, vol. 37(10), pages 3758-3768, October.
    2. Hutchinson, Tim & Burgess, Stuart & Herrmann, Guido, 2014. "Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis," Applied Energy, Elsevier, vol. 119(C), pages 314-329.
    3. Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
    4. Ivan Mareev & Jan Becker & Dirk Uwe Sauer, 2017. "Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation," Energies, MDPI, vol. 11(1), pages 1-23, December.
    5. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 103(C), pages 488-506.
    6. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    7. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    8. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    9. Sovacool, Benjamin K. & Martiskainen, Mari & Hook, Andrew & Baker, Lucy, 2020. "Beyond cost and carbon: The multidimensional co-benefits of low carbon transitions in Europe," Ecological Economics, Elsevier, vol. 169(C).
    10. Thiel, Christian & Perujo, Adolfo & Mercier, Arnaud, 2010. "Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 7142-7151, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Kaying & Acha, Salvador & Sunny, Nixon & Shah, Nilay, 2022. "Strategic transport fleet analysis of heavy goods vehicle technology for net-zero targets," Energy Policy, Elsevier, vol. 168(C).
    2. Jahangir Samet, Mehdi & Liimatainen, Heikki & Pihlatie, Mikko & van Vliet, Oscar Patrick René, 2024. "Levelized cost of driving for medium and heavy-duty battery electric trucks," Applied Energy, Elsevier, vol. 361(C).
    3. Stettler, Marc E.J. & Woo, Mino & Ainalis, Daniel & Achurra-Gonzalez, Pablo & Speirs, Jamie & Cooper, Jasmin & Lim, Dong-Ha & Brandon, Nigel & Hawkes, Adam, 2023. "Review of Well-to-Wheel lifecycle emissions of liquefied natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 333(C).
    4. Teng, Fei & Zhang, Qi & Chen, Siyuan & Wang, Ge & Huang, Zhenyue & Wang, Lu, 2024. "Comprehensive effects of policy mixes on the diffusion of heavy-duty hydrogen fuel cell electric trucks in China considering technology learning," Energy Policy, Elsevier, vol. 185(C).
    5. Aleksander Jagiełło & Marcin Wołek & Wojciech Bizon, 2023. "Comparison of Tender Criteria for Electric and Diesel Buses in Poland—Has the Ongoing Revolution in Urban Transport Been Overlooked?," Energies, MDPI, vol. 16(11), pages 1-17, May.
    6. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    7. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    8. Mariano Gallo & Mario Marinelli, 2022. "The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO 2 Emissions: The Case of Italy," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    9. Bakker, J. & Lopez Alvarez, J.A. & Buijs, P., 2024. "A network design perspective on the adoption potential of electric road systems in early development stages," Applied Energy, Elsevier, vol. 361(C).
    10. Mariano Gallo & Mario Marinelli, 2023. "The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context," Energies, MDPI, vol. 16(1), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    2. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    3. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    4. Ewelina Sendek-Matysiak & Dariusz Pyza & Zbigniew Łosiewicz & Wojciech Lewicki, 2022. "Total Cost of Ownership of Light Commercial Electrical Vehicles in City Logistics," Energies, MDPI, vol. 15(22), pages 1-23, November.
    5. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    6. Danielis, Romeo & Giansoldati, Marco & Scorrano, Mariangela, 2019. "Consumer- and society-oriented cost of ownership of electric and conventional cars in Italy," Working Papers 19_3, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    7. Breetz, Hanna L. & Salon, Deborah, 2018. "Do electric vehicles need subsidies? Ownership costs for conventional, hybrid, and electric vehicles in 14 U.S. cities," Energy Policy, Elsevier, vol. 120(C), pages 238-249.
    8. Tushar Gahlaut & Gourav Dwivedi, 2024. "To Determine the Desired Purchase Preference of the Consumers Among Various Electric, Internal Combustion Engine and Hybrid Vehicles," Papers 2404.11705, arXiv.org, revised Jun 2024.
    9. Anselma, Pier Giuseppe, 2022. "Electrified powertrain sizing for vehicle fleets of car makers considering total ownership costs and CO2 emission legislation scenarios," Applied Energy, Elsevier, vol. 314(C).
    10. Malima, Gabriel Clement & Moyo, Francis, 2023. "Are electric vehicles economically viable in sub-Saharan Africa? The total cost of ownership of internal combustion engine and electric vehicles in Tanzania," Transport Policy, Elsevier, vol. 141(C), pages 14-26.
    11. Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.
    12. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    13. Coffman, Makena & Bernstein, Paul & Wee, Sherilyn, 2017. "Integrating electric vehicles and residential solar PV," Transport Policy, Elsevier, vol. 53(C), pages 30-38.
    14. Kantapich Preedakorn & David Butler & Jörn Mehnen, 2023. "Challenges for the Adoption of Electric Vehicles in Thailand: Potential Impacts, Barriers, and Public Policy Recommendations," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    15. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Dissecting the total cost of ownership of fully electric cars in Italy: The impact of annual distance travelled, home charging and urban driving," Research in Transportation Economics, Elsevier, vol. 80(C).
    16. Ji, Dandan & Gan, Hongcheng, 2022. "Effects of providing total cost of ownership information on below-40 young consumers’ intent to purchase an electric vehicle: A case study in China," Energy Policy, Elsevier, vol. 165(C).
    17. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.
    18. Jaroslaw Milczarek & Piotr Cyplik & Sebastian Wieczerniak, 2018. "Using Total Cost Of Ownership As A Method For Identification Of Internal Problems In Purchase Area – Case Study," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 18, pages 205-223.
    19. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    20. Babar, Abdul Haseeb Khan & Ali, Yousaf, 2021. "Enhancement of electric vehicles’ market competitiveness using fuzzy quality function deployment," Technological Forecasting and Social Change, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.