IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002708.html
   My bibliography  Save this article

A network design perspective on the adoption potential of electric road systems in early development stages

Author

Listed:
  • Bakker, J.
  • Lopez Alvarez, J.A.
  • Buijs, P.

Abstract

The electrification of heavy freight trucks presents a significant challenge in the global push to decarbonize the transport sector. This study explores the deployment of Electric Road Systems (ERS) as a potential solution. We propose a novel methodology, grounded in rich empirical data, and apply it to the potential deployment of ERS infrastructure in the Netherlands. The primary aim is to analyze the adoption potential of different ERS network designs during the early stages of ERS development, specifically contrasting dense infrastructures with longer ERS corridors. The results show that corridors offer superior performance in terms of the distance traveled over the ERS infrastructure while dense networks attract more, but shorter trips. These differences in performance indicators have important implications for policymakers when considering the financial viability and environmental impact of different ERS network designs.

Suggested Citation

  • Bakker, J. & Lopez Alvarez, J.A. & Buijs, P., 2024. "A network design perspective on the adoption potential of electric road systems in early development stages," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002708
    DOI: 10.1016/j.apenergy.2024.122887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsiropoulos, Ioannis & Siskos, Pelopidas & Capros, Pantelis, 2022. "The cost of recharging infrastructure for electric vehicles in the EU in a climate neutrality context: Factors influencing investments in 2030 and 2050," Applied Energy, Elsevier, vol. 322(C).
    2. Gunawan, Tubagus Aryandi & Monaghan, Rory F.D., 2022. "Techno-econo-environmental comparisons of zero- and low-emission heavy-duty trucks," Applied Energy, Elsevier, vol. 308(C).
    3. Shi, Jie & Yu, Nanpeng & Gao, H. Oliver, 2022. "Bidding strategy for wireless charging roads with energy storage in real-time electricity markets," Applied Energy, Elsevier, vol. 327(C).
    4. Hasan Huseyin Coban & Aysha Rehman & Abdullah Mohamed, 2022. "Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport," Energies, MDPI, vol. 15(5), pages 1-20, March.
    5. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2017. "Spacial and dynamic energy demand of the E39 highway – Implications on electrification options," Applied Energy, Elsevier, vol. 195(C), pages 681-692.
    6. Helgeson, Broghan & Peter, Jakob, 2020. "The role of electricity in decarbonizing European road transport – Development and assessment of an integrated multi-sectoral model," Applied Energy, Elsevier, vol. 262(C).
    7. Jesko Schulte & Henrik Ny, 2018. "Electric Road Systems: Strategic Stepping Stone on the Way towards Sustainable Freight Transport?," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    8. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.
    9. Haddad, Diala & Konstantinou, Theodora & Aliprantis, Dionysios & Gkritza, Konstantina & Pekarek, Steven & Haddock, John, 2022. "Analysis of the financial viability of high-powered electric roadways: A case study for the state of Indiana," Energy Policy, Elsevier, vol. 171(C).
    10. Bi, Zicheng & Kan, Tianze & Mi, Chunting Chris & Zhang, Yiming & Zhao, Zhengming & Keoleian, Gregory A., 2016. "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Elsevier, vol. 179(C), pages 413-425.
    11. Keller, Victor & Lyseng, Benjamin & Wade, Cameron & Scholtysik, Sven & Fowler, McKenzie & Donald, James & Palmer-Wilson, Kevin & Robertson, Bryson & Wild, Peter & Rowe, Andrew, 2019. "Electricity system and emission impact of direct and indirect electrification of heavy-duty transportation," Energy, Elsevier, vol. 172(C), pages 740-751.
    12. Niklas Jakobsson & Elias Hartvigsson & Maria Taljegard & Filip Johnsson, 2023. "Substation Placement for Electric Road Systems," Energies, MDPI, vol. 16(10), pages 1-19, May.
    13. Sun, Longzhao & Ma, Dianguang & Tang, Houjun, 2018. "A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 490-503.
    14. Shi, Jie & Gao, H. Oliver, 2022. "Efficient energy management of wireless charging roads with energy storage for coupled transportation–power systems," Applied Energy, Elsevier, vol. 323(C).
    15. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    16. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2019. "Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study," Applied Energy, Elsevier, vol. 235(C), pages 1637-1650.
    17. Jelica, D. & Taljegard, M. & Thorson, L. & Johnsson, F., 2018. "Hourly electricity demand from an electric road system – A Swedish case study," Applied Energy, Elsevier, vol. 228(C), pages 141-148.
    18. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2019. "Electric Vehicles as Flexibility Management Strategy for the Electricity System—A Comparison between Different Regions of Europe," Energies, MDPI, vol. 12(13), pages 1-19, July.
    19. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
    20. Noll, Bessie & del Val, Santiago & Schmidt, Tobias S. & Steffen, Bjarne, 2022. "Analyzing the competitiveness of low-carbon drive-technologies in road-freight: A total cost of ownership analysis in Europe," Applied Energy, Elsevier, vol. 306(PB).
    21. Qiu, K. & Ribberink, H. & Entchev, E., 2022. "Economic feasibility of electrified highways for heavy-duty electric trucks," Applied Energy, Elsevier, vol. 326(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colovic, Aleksandra & Marinelli, Mario & Ottomanelli, Michele, 2024. "Towards the electrification of freight transport: A network design model for assessing the adoption of eHighways," Transport Policy, Elsevier, vol. 150(C), pages 106-120.
    2. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    3. Matteo Prussi & Lorenzo Laveneziana & Lorenzo Testa & David Chiaramonti, 2022. "Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports," Energies, MDPI, vol. 15(21), pages 1-17, October.
    4. Niklas Jakobsson & Elias Hartvigsson & Maria Taljegard & Filip Johnsson, 2023. "Substation Placement for Electric Road Systems," Energies, MDPI, vol. 16(10), pages 1-19, May.
    5. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    6. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2019. "Electric Vehicles as Flexibility Management Strategy for the Electricity System—A Comparison between Different Regions of Europe," Energies, MDPI, vol. 12(13), pages 1-19, July.
    8. Hasan Huseyin Coban & Aysha Rehman & Abdullah Mohamed, 2022. "Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport," Energies, MDPI, vol. 15(5), pages 1-20, March.
    9. Ye, Zuzhao & Bragin, Mikhail A. & Yu, Nanpeng & Wei, Ran, 2024. "Joint planning of dynamic wireless charging lanes and power delivery infrastructure for heavy-duty drayage trucks," Applied Energy, Elsevier, vol. 375(C).
    10. Alberto Danese & Michele Garau & Andreas Sumper & Bendik Nybakk Torsæter, 2021. "Electrical Infrastructure Design Methodology of Dynamic and Static Charging for Heavy and Light Duty Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-15, June.
    11. Gunawan, Tubagus Aryandi & Monaghan, Rory F.D., 2022. "Techno-econo-environmental comparisons of zero- and low-emission heavy-duty trucks," Applied Energy, Elsevier, vol. 308(C).
    12. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    13. Mehdi Jahangir Samet & Heikki Liimatainen & Oscar Patrick René van Vliet & Markus Pöllänen, 2021. "Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    14. Keller, Victor & English, Jeffrey & Fernandez, Julian & Wade, Cameron & Fowler, McKenzie & Scholtysik, Sven & Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Wild, Peter & Crawford, Curran , 2019. "Electrification of road transportation with utility controlled charging: A case study for British Columbia with a 93% renewable electricity target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Schöpp, Ferdinand & Öztürk, Özgür & Wilke, Jürgen & Linke, Regina & Kaßens-Noor, Eva, 2024. "Impact of an eHighway on the directly emitted greenhouse gases by road freight transport," Transport Policy, Elsevier, vol. 155(C), pages 300-308.
    16. Jürgen K. Wilke & Ferdinand Schöpp & Regina Linke & Laurenz Bremer & Maya Ada Scheyltjens & Niki Buggenhout & Eva Kassens-Noor, 2024. "Availability of an Overhead Contact Line System for the Electrification of Road Freight Transport," Sustainability, MDPI, vol. 16(15), pages 1-14, July.
    17. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    18. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Andong Yin & Shenchun Wu & Weihan Li & Jinfang Hu, 2019. "Analysis of Battery Reduction for an Improved Opportunistic Wireless-Charged Electric Bus," Energies, MDPI, vol. 12(15), pages 1-24, July.
    20. Shi, Jie & Gao, H. Oliver, 2022. "Efficient energy management of wireless charging roads with energy storage for coupled transportation–power systems," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.