IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v160y2025icp116-124.html
   My bibliography  Save this article

Policy implications of electrifying land freight transport towards carbon-neutral in China

Author

Listed:
  • Qian, Jiaqi
  • Wang, Ge
  • Yin, Ting
  • Mao, Yuxuan
  • Chen, Siyuan
  • Li, Yan
  • Liu, Jiangfeng
  • Zhang, Qi

Abstract

Electrification is currently the most promising technology for decarbonizing the land transport sector in China. Economic incentives and regulatory measures have been proposed or adopted to promote electric trucks and trains. However, the policy pathway to carbon neutrality and its costs and benefits remain unclear. An integrated dynamic economic-environmental assessment model for the land freight transport sector is proposed and applied to simulate the impact of different policy pathways during 2021–2060. The results show that China's land freight transport sector could reach carbon peak between 2029 and 2040, while becoming carbon neutral by 2060, with the average carbon abatement cost ranging from 2346 to 61 RMB/t. Due to the high carbon intensity of the current electricity system and the high cost of electric trucks, promoting electrification in the land freight transport sector before 2031 is neither economic nor environmentally friendly. However, from a long-term perspective, the hurry-up electrification could save 5.34 Gt of the total carbon budget at the cost of emitting 0.49 Gt more CO2 in the first decade (2021–2030) and spending 74.42 trillion RMB more in accumulated investment compared to the delayed electrification scenario. Policymakers should pay attention to such trade-offs between short-term and long-term benefits. The impacts of other key features of the policy pathway towards carbon neutrality of the land freight sector, such as the road-to-tail ratio and the growth rate of freight turnover, were also analyzed.

Suggested Citation

  • Qian, Jiaqi & Wang, Ge & Yin, Ting & Mao, Yuxuan & Chen, Siyuan & Li, Yan & Liu, Jiangfeng & Zhang, Qi, 2025. "Policy implications of electrifying land freight transport towards carbon-neutral in China," Transport Policy, Elsevier, vol. 160(C), pages 116-124.
  • Handle: RePEc:eee:trapol:v:160:y:2025:i:c:p:116-124
    DOI: 10.1016/j.tranpol.2024.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24003354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Weisheng & Lin, Boqiang, 2021. "Electrification of rails in China: Its impact on energy conservation and emission reduction," Energy, Elsevier, vol. 226(C).
    2. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    3. Yan, Jiaze & Wang, Ge & Chen, Siyuan & Zhang, He & Qian, Jiaqi & Mao, Yuxuan, 2022. "Harnessing freight platforms to promote the penetration of long-haul heavy-duty hydrogen fuel-cell trucks," Energy, Elsevier, vol. 254(PA).
    4. Kveiborg, Ole & Fosgerau, Mogens, 2007. "Decomposing the decoupling of Danish road freight traffic growth and economic growth," Transport Policy, Elsevier, vol. 14(1), pages 39-48, January.
    5. Nealer, Rachael & Matthews, H. Scott & Hendrickson, Chris, 2012. "Assessing the energy and greenhouse gas emissions mitigation effectiveness of potential US modal freight policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 588-601.
    6. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    7. Noll, Bessie & del Val, Santiago & Schmidt, Tobias S. & Steffen, Bjarne, 2022. "Analyzing the competitiveness of low-carbon drive-technologies in road-freight: A total cost of ownership analysis in Europe," Applied Energy, Elsevier, vol. 306(PB).
    8. Xian, Yujiao & Wang, Qian & Fan, Wenrong & Da, Yabin & Fan, Jing-Li, 2022. "The impact of different incentive policies on new energy vehicle demand in China's gigantic cities," Energy Policy, Elsevier, vol. 168(C).
    9. Alises, Ana & Vassallo, Jose Manuel & Guzmán, Andrés Felipe, 2014. "Road freight transport decoupling: A comparative analysis between the United Kingdom and Spain," Transport Policy, Elsevier, vol. 32(C), pages 186-193.
    10. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    11. Yan, Shiyu & de Bruin, Kelly & Dennehy, Emer & Curtis, John, 2021. "Climate policies for freight transport: Energy and emission projections through 2050," Transport Policy, Elsevier, vol. 107(C), pages 11-23.
    12. Qiu, K. & Ribberink, H. & Entchev, E., 2022. "Economic feasibility of electrified highways for heavy-duty electric trucks," Applied Energy, Elsevier, vol. 326(C).
    13. Alises, Ana & Vassallo, José Manuel, 2015. "Comparison of road freight transport trends in Europe. Coupling and decoupling factors from an Input–Output structural decomposition analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 141-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teng, Fei & Zhang, Qi & Chen, Siyuan & Wang, Ge & Huang, Zhenyue & Wang, Lu, 2024. "Comprehensive effects of policy mixes on the diffusion of heavy-duty hydrogen fuel cell electric trucks in China considering technology learning," Energy Policy, Elsevier, vol. 185(C).
    2. Yin, Ting & Chen, Siyuan & Wang, Ge & Tan, Yuxuan & Teng, Fei & Zhang, Qi, 2024. "Can subsidy policies achieve fuel cell logistics vehicle (FCLV) promotion targets? Evidence from the beijing-tianjin-hebei fuel cell vehicle demonstration city cluster in China," Energy, Elsevier, vol. 311(C).
    3. Mariano Gallo & Mario Marinelli, 2023. "The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context," Energies, MDPI, vol. 16(1), pages 1-20, January.
    4. Colovic, Aleksandra & Marinelli, Mario & Ottomanelli, Michele, 2024. "Towards the electrification of freight transport: A network design model for assessing the adoption of eHighways," Transport Policy, Elsevier, vol. 150(C), pages 106-120.
    5. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    6. Carlos Scheel & Eduardo Aguiñaga & Bernardo Bello, 2020. "Decoupling Economic Development from the Consumption of Finite Resources Using Circular Economy. A Model for Developing Countries," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    7. Galina Ševčenko-Kozlovska & Kristina Čižiūnienė, 2022. "The Impact of Economic Sustainability in the Transport Sector on GDP of Neighbouring Countries: Following the Example of the Baltic States," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    8. Løvold Rødseth, Kenneth, 2017. "Productivity growth in urban freight transport: An index number approach," Transport Policy, Elsevier, vol. 56(C), pages 86-95.
    9. Muhammad Shafique & Anam Azam & Muhammad Rafiq & Xiaowei Luo, 2020. "Evaluating the Relationship between Freight Transport, Economic Prosperity, Urbanization, and CO 2 Emissions: Evidence from Hong Kong, Singapore, and South Korea," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    10. Yu, Biying & Tan, Jin-Xiao & Zhang, Shitong, 2024. "Uncertainties in the technological pathway towards low-carbon freight transport under carbon neutral target in China," Applied Energy, Elsevier, vol. 365(C).
    11. Bakker, J. & Lopez Alvarez, J.A. & Buijs, P., 2024. "A network design perspective on the adoption potential of electric road systems in early development stages," Applied Energy, Elsevier, vol. 361(C).
    12. Mariano Gallo & Mario Marinelli, 2022. "The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO 2 Emissions: The Case of Italy," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    13. Tob-Ogu, Abiye & Kumar, Niraj & Cullen, John, 2018. "ICT adoption in road freight transport in Nigeria – A case study of the petroleum downstream sector," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 240-252.
    14. Yan, Shiyu & de Bruin, Kelly & Dennehy, Emer & Curtis, John, 2021. "Climate policies for freight transport: Energy and emission projections through 2050," Transport Policy, Elsevier, vol. 107(C), pages 11-23.
    15. Gomez, Juan & Vassallo, José Manuel, 2015. "Evolution over time of heavy vehicle volume in toll roads: A dynamic panel data to identify key explanatory variables in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 282-297.
    16. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    17. Jia Li & Yahong Zheng & Bing Liu & Yanyi Chen & Zhihang Zhong & Chenyu Dong & Chaoqun Wang, 2024. "The Synergistic Relationship between Low-Carbon Development of Road Freight Transport and Its Economic Efficiency—A Case Study of Wuhan, China," Sustainability, MDPI, vol. 16(7), pages 1-21, March.
    18. Carlos Felipe Urazán-Bonells & Hugo Alexander Rondón-Quintana & Carlos Alfonso Zafra-Mejía, 2024. "Correlation between Sectoral GDP and the Values of Road Freight Transportation in Colombia," Economies, MDPI, vol. 12(8), pages 1-28, August.
    19. Malin Song & Nan Wu & Kaiya Wu, 2014. "Energy Consumption and Energy Efficiency of the Transportation Sector in Shanghai," Sustainability, MDPI, vol. 6(2), pages 1-16, February.
    20. Li, Zezheng & Yu, Pengwei & Xian, Yujiao & Fan, Jing-Li, 2024. "Investment benefit analysis of coal-to-hydrogen coupled CCS technology in China based on real option approach," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:160:y:2025:i:c:p:116-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.