IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5524-d1514255.html
   My bibliography  Save this article

Optimised Deep Learning for Time-Critical Load Forecasting Using LSTM and Modified Particle Swarm Optimisation

Author

Listed:
  • M. Zulfiqar

    (Department of Telecommunication, Bahauddin Zakariya University, Multan 60700, Pakistan
    These authors contributed equally to this work.)

  • Kelum A. A. Gamage

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
    These authors contributed equally to this work.)

  • M. B. Rasheed

    (School of Business, Computing and Social Sciences, University of Gloucestershire, The Park, Cheltenham GL50 2RH, UK)

  • C. Gould

    (School of Engineering and Sustainable Development, De Montfort University, The Gateway, Leicester LE1 9BH, UK)

Abstract

Short-term electric load forecasting is critical for power system planning and operations due to demand fluctuations driven by variable energy resources. While deep learning-based forecasting models have shown strong performance, time-sensitive applications require improvements in both accuracy and convergence speed. To address this, we propose a hybrid model that combines long short-term memory (LSTM) with a modified particle swarm optimisation (mPSO) algorithm. Although LSTM is effective for nonlinear time-series predictions, its computational complexity increases with parameter variations. To overcome this, mPSO is used for parameter tuning, ensuring accurate forecasting while avoiding local optima. Additionally, XGBoost and decision tree filtering algorithms are incorporated to reduce dimensionality and prevent overfitting. Unlike existing models that focus mainly on accuracy, our framework optimises accuracy, stability, and convergence rate simultaneously. The model was tested on real hourly load data from New South Wales and Victoria, significantly outperforming benchmark models such as ENN, LSTM, GA-LSTM, and PSO-LSTM. For NSW, the proposed model reduced MSE by 91.91%, RMSE by 94.89%, and MAPE by 74.29%. In VIC, MSE decreased by 91.33%, RMSE by 95.73%, and MAPE by 72.06%, showcasing superior performance across all metrics.

Suggested Citation

  • M. Zulfiqar & Kelum A. A. Gamage & M. B. Rasheed & C. Gould, 2024. "Optimised Deep Learning for Time-Critical Load Forecasting Using LSTM and Modified Particle Swarm Optimisation," Energies, MDPI, vol. 17(22), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5524-:d:1514255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. González Grandón, T. & Schwenzer, J. & Steens, T. & Breuing, J., 2024. "Electricity demand forecasting with hybrid classical statistical and machine learning algorithms: Case study of Ukraine," Applied Energy, Elsevier, vol. 355(C).
    2. Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
    3. Masa-Bote, D. & Castillo-Cagigal, M. & Matallanas, E. & Caamaño-Martín, E. & Gutiérrez, A. & Monasterio-Huelín, F. & Jiménez-Leube, J., 2014. "Improving photovoltaics grid integration through short time forecasting and self-consumption," Applied Energy, Elsevier, vol. 125(C), pages 103-113.
    4. Li, Xuetao & Wang, Ziwei & Yang, Chengying & Bozkurt, Ayhan, 2024. "An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms," Energy, Elsevier, vol. 296(C).
    5. Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Shah, Ibrar Ali & Khan, Farrukh Aslam & Derhab, Abdelouahid, 2021. "A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid," Applied Energy, Elsevier, vol. 299(C).
    6. Che, JinXing & Wang, JianZhou, 2014. "Short-term load forecasting using a kernel-based support vector regression combination model," Applied Energy, Elsevier, vol. 132(C), pages 602-609.
    7. Wang, Jianzhou & Zhang, Linyue & Li, Zhiwu, 2022. "Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 305(C).
    8. Kisi, Ozgur & Shiri, Jalal & Karimi, Sepideh & Shamshirband, Shahaboddin & Motamedi, Shervin & Petković, Dalibor & Hashim, Roslan, 2015. "A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 731-743.
    9. Wang, Jianzhou & Zhu, Suling & Zhang, Wenyu & Lu, Haiyan, 2010. "Combined modeling for electric load forecasting with adaptive particle swarm optimization," Energy, Elsevier, vol. 35(4), pages 1671-1678.
    10. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laouafi, Abderrezak & Laouafi, Farida & Boukelia, Taqiy Eddine, 2022. "An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting," Applied Energy, Elsevier, vol. 322(C).
    2. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    3. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    4. Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).
    5. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    6. Hu, Yi & Qu, Boyang & Wang, Jie & Liang, Jing & Wang, Yanli & Yu, Kunjie & Li, Yaxin & Qiao, Kangjia, 2021. "Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning," Applied Energy, Elsevier, vol. 285(C).
    7. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    8. Wang, Xiao & Sun, Xiao-Xue & Chu, Shu-Chuan & Watada, Junzo & Pan, Jeng-Shyang, 2023. "Improved butterfly optimization algorithm applied to prediction of combined cycle power plant," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 337-353.
    9. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    10. Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.
    11. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a combined model based on multi-objective optimization for electrical load forecasting," Energy, Elsevier, vol. 119(C), pages 1057-1074.
    12. Wang, Jianzhou & Gao, Jialu & Wei, Danxiang, 2022. "Electric load prediction based on a novel combined interval forecasting system," Applied Energy, Elsevier, vol. 322(C).
    13. Xu, Yan & Yu, Qi & Du, Pei & Wang, Jianzhou, 2024. "A paradigm shift in solar energy forecasting: A novel two-phase model for monthly residential consumption," Energy, Elsevier, vol. 305(C).
    14. Siddik Shakul Hameed & Ramesh Ramadoss & Kannadasan Raju & GM Shafiullah, 2022. "A Framework-Based Wind Forecasting to Assess Wind Potential with Improved Grey Wolf Optimization and Support Vector Regression," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    15. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
    16. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    17. Dadkhah, Mojtaba & Jahangoshai Rezaee, Mustafa & Zare Chavoshi, Ahmad, 2018. "Short-term power output forecasting of hourly operation in power plant based on climate factors and effects of wind direction and wind speed," Energy, Elsevier, vol. 148(C), pages 775-788.
    18. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    19. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    20. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5524-:d:1514255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.