Holt’s exponential smoothing and neural network models for forecasting interval-valued time series
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2010.02.012
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
- Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
- Williams, Dan W. & Miller, Don, 1999. "Level-adjusted exponential smoothing for modeling planned discontinuities1," International Journal of Forecasting, Elsevier, vol. 15(3), pages 273-289, July.
- Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
- Lima Neto, Eufrasio de A. & de Carvalho, Francisco de A.T., 2008. "Centre and Range method for fitting a linear regression model to symbolic interval data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1500-1515, January.
- Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Arroyo, Javier & Maté, Carlos, 2009. "Forecasting histogram time series with k-nearest neighbours methods," International Journal of Forecasting, Elsevier, vol. 25(1), pages 192-207.
- Fang, Yue, 2003. "Forecasting combination and encompassing tests," International Journal of Forecasting, Elsevier, vol. 19(1), pages 87-94.
- Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
- repec:dau:papers:123456789/12414 is not listed on IDEAS
- Francisco Carvalho & Paula Brito & Hans-Hermann Bock, 2006. "Dynamic clustering for interval data based on L 2 distance," Computational Statistics, Springer, vol. 21(2), pages 231-250, June.
- Groenen, P.J.F. & Winsberg, S. & Rodriguez, O. & Diday, E., 2006. "I-Scal: Multidimensional scaling of interval dissimilarities," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 360-378, November.
- Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
- Marie Chavent & Francisco Carvalho & Yves Lechevallier & Rosanna Verde, 2006. "New clustering methods for interval data," Computational Statistics, Springer, vol. 21(2), pages 211-229, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
- Feng Xu & Mohamad Sepehri & Jian Hua & Sergey Ivanov & Julius N. Anyu, 2018. "Time-Series Forecasting Models for Gasoline Prices in China," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(12), pages 1-43, December.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Gloria Gonzalez-Rivera & Javier Arroyo & Carlos Mate, 2011. "Forecasting with Interval and Histogram Data. Some Financial Applications," Working Papers 201438, University of California at Riverside, Department of Economics.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Oscar Trull & Juan Carlos García-Díaz & Alicia Troncoso, 2020. "Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models," Mathematics, MDPI, vol. 8(2), pages 1-16, February.
- Eufr�sio de A. Lima Neto & Ulisses U. dos Anjos, 2015. "Regression model for interval-valued variables based on copulas," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 2010-2029, September.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
- Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
- Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
- Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.
- Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
- Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.
- Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
- Isra Al-Turaiki & Fahad Almutlaq & Hend Alrasheed & Norah Alballa, 2021. "Empirical Evaluation of Alternative Time-Series Models for COVID-19 Forecasting in Saudi Arabia," IJERPH, MDPI, vol. 18(16), pages 1-19, August.
More about this item
Keywords
Symbolic data analysis; Exponential smoothing; Neural networks; Hybrid forecasting models; Interval-valued data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:3:p:740-759. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.