Regional Residential Short-Term Load-Interval Forecasting Based on SSA-LSTM and Load Consumption Consistency Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Qing & Wang, Hao & Wang, Taotao & Zhang, Shengli & Wu, Xiaoxiao & Wang, Hui, 2021. "Blockchain-based decentralized energy management platform for residential distributed energy resources in a virtual power plant," Applied Energy, Elsevier, vol. 294(C).
- Serrano-Guerrero, Xavier & Briceño-León, Marco & Clairand, Jean-Michel & Escrivá-Escrivá, Guillermo, 2021. "A new interval prediction methodology for short-term electric load forecasting based on pattern recognition," Applied Energy, Elsevier, vol. 297(C).
- Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
- Sirignano, Justin & Spiliopoulos, Konstantinos, 2020. "Mean field analysis of neural networks: A central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1820-1852.
- Yizhen Wang & Ningqing Zhang & Xiong Chen, 2021. "A Short-Term Residential Load Forecasting Model Based on LSTM Recurrent Neural Network Considering Weather Features," Energies, MDPI, vol. 14(10), pages 1-13, May.
- Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
- Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
- Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
- Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
- Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).
- Wang, Jianzhou & Gao, Jialu & Wei, Danxiang, 2022. "Electric load prediction based on a novel combined interval forecasting system," Applied Energy, Elsevier, vol. 322(C).
- Niraj Buyo & Akbar Sheikh-Akbari & Farrukh Saleem, 2025. "An Ensemble Approach to Predict a Sustainable Energy Plan for London Households," Sustainability, MDPI, vol. 17(2), pages 1-30, January.
- Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
- Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
- Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
- Zheng Wan & Hui Li, 2023. "Short-Term Power Load Forecasting Based on Feature Filtering and Error Compensation under Imbalanced Samples," Energies, MDPI, vol. 16(10), pages 1-22, May.
- Grzegorz Dudek, 2022. "A Comprehensive Study of Random Forest for Short-Term Load Forecasting," Energies, MDPI, vol. 15(20), pages 1-19, October.
- Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
- Huang, Z.F. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2023. "Development of a novel grid-free district cooling system considering blockchain-based demand response management," Applied Energy, Elsevier, vol. 342(C).
- Ioanna Andreoulaki & Aikaterini Papapostolou & Vangelis Marinakis, 2024. "Evaluating the Barriers to Blockchain Adoption in the Energy Sector: A Multicriteria Approach Using the Analytical Hierarchy Process for Group Decision Making," Energies, MDPI, vol. 17(6), pages 1-27, March.
- Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
- Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
- Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
- Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
- Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).
- Xiong, Chang & Su, Yixin & Wang, Hao & Dong, Zhengcheng & Tian, Meng & Shi, Binghua, 2024. "Consensus-based decentralized scheduling method for collaborative operation in seaport virtual power plant," Applied Energy, Elsevier, vol. 373(C).
- Marco G. Pinheiro & Sara C. Madeira & Alexandre P. Francisco, 2022. "Shapelets to Classify Energy Demand Time Series," Energies, MDPI, vol. 15(8), pages 1-17, April.
More about this item
Keywords
load-interval forecasting; long short-term memory; regional residential load; uncertainty analysis; singular spectrum analysis; load consumption consistency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8062-:d:1300114. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.