IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v37y2021i1p171-185.html
   My bibliography  Save this article

Forecasting high resolution electricity demand data with additive models including smooth and jagged components

Author

Listed:
  • Amato, Umberto
  • Antoniadis, Anestis
  • De Feis, Italia
  • Goude, Yannig
  • Lagache, Audrey

Abstract

Short-Term Load Forecasting (STLF) is a fundamental instrument in the efficient operational management and planning of electric utilities. Emerging smart grid technologies pose new challenges and opportunities. Although load forecasting at the aggregate level has been extensively studied, electrical load forecasting at fine-grained geographical scales of households is more challenging. Among existing approaches, semi-parametric generalized additive models (GAM) have been increasingly popular due to their accuracy, flexibility, and interpretability. Their applicability is justified when forecasting is addressed at higher levels of aggregation, since the aggregated load pattern contains relatively smooth additive components. High resolution data are highly volatile, forecasting the average load using GAM models with smooth components does not provide meaningful information about the future demand. Instead, we need to incorporate irregular and volatile effects to enhance the forecast accuracy. We focus on the analysis of such hybrid additive models applied on smart meters data and show that it leads to improvement of the forecasting performances of classical additive models at low aggregation levels.

Suggested Citation

  • Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.
  • Handle: RePEc:eee:intfor:v:37:y:2021:i:1:p:171-185
    DOI: 10.1016/j.ijforecast.2020.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207020300583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2020.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou S. & Shen X., 2001. "Spatially Adaptive Regression Splines and Accurate Knot Selection Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 247-259, March.
    2. Haben, Stephen & Ward, Jonathan & Vukadinovic Greetham, Danica & Singleton, Colin & Grindrod, Peter, 2014. "A new error measure for forecasts of household-level, high resolution electrical energy consumption," International Journal of Forecasting, Elsevier, vol. 30(2), pages 246-256.
    3. Umberto Amato & Anestis Antoniadis & Italia De Feis, 2016. "Additive model selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 519-564, November.
    4. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    5. Antoniadis A. & Fan J., 2001. "Regularization of Wavelet Approximations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 939-967, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amara-Ouali, Yvenn & Fasiolo, Matteo & Goude, Yannig & Yan, Hui, 2023. "Daily peak electrical load forecasting with a multi-resolution approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1272-1286.
    2. Pinheiro, Marco G. & Madeira, Sara C. & Francisco, Alexandre P., 2023. "Short-term electricity load forecasting—A systematic approach from system level to secondary substations," Applied Energy, Elsevier, vol. 332(C).
    3. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    4. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    5. Che, Jinxing & Yuan, Fang & Zhu, Suling & Yang, Youlong, 2022. "An adaptive ensemble framework with representative subset based weight correction for short-term forecast of peak power load," Applied Energy, Elsevier, vol. 328(C).
    6. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    7. Antoniadis, Anestis & Gaucher, Solenne & Goude, Yannig, 2024. "Hierarchical transfer learning with applications to electricity load forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 641-660.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    2. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    3. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    4. Joel L. Horowitz & Jian Huang, 2012. "Penalized estimation of high-dimensional models under a generalized sparsity condition," CeMMAP working papers 17/12, Institute for Fiscal Studies.
    5. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 267-286.
    6. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "Bitcoin: Like a Satellite or Always Hardcore? A Core-Satellite Identification in the Cryptocurrency Market," Papers 2105.12336, arXiv.org.
    7. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    8. Krzysztof Dmytrow & Beata Bieszk-Stolorz, 2021. "Comparison of changes in the labour markets of post-communist countries with other EU member states," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 741-764, December.
    9. Yangchen Di & Mingyue Lu & Min Chen & Zhangjian Chen & Zaiyang Ma & Manzhu Yu, 2022. "A quantitative method for the similarity assessment of typhoon tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 587-602, May.
    10. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Documents de travail du Centre d'Economie de la Sorbonne 15085, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    12. Sophie Lambert-Lacroix & Laurent Zwald, 2016. "The adaptive BerHu penalty in robust regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 487-514, September.
    13. Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
    14. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    15. Joel L. Horowitz & Jian Huang, 2012. "Penalized estimation of high-dimensional models under a generalized sparsity condition," CeMMAP working papers CWP17/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    17. Chiu, Nan-Chieh & Fang, Shu-Cherng & Lavery, John E. & Lin, Jen-Yen & Wang, Yong, 2008. "Approximating term structure of interest rates using cubic L1 splines," European Journal of Operational Research, Elsevier, vol. 184(3), pages 990-1004, February.
    18. Corey Ducharme & Bruno Agard & Martin Trépanier, 2024. "Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1661-1681, August.
    19. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    20. Chen, Ying & Niu, Linlin & Chen, Ray-Bing & He, Qiang, 2019. "Sparse-Group Independent Component Analysis with application to yield curves prediction," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 76-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:37:y:2021:i:1:p:171-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.