IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921012319.html
   My bibliography  Save this article

Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids

Author

Listed:
  • Wang, Y.
  • Rousis, A. Oulis
  • Strbac, G.

Abstract

Networked microgrids are considered an effective way to enhance resilience of localized energy systems. Recently, research efforts across the world have been focusing on the optimal sizing and pre-positioning problems of distributed energy resources for networked microgrids. However, existing literature on mobile energy storage systems mainly focused on single pre-positioning or operational problems rather than a comprehensive resilience-driven planning model capturing both optimal sizing and pre-positioning, especially in the presence of several MGs operating in a networked fashion. Additionally, centralized control is the method typically used to model networked microgrids that may be perceived as unrealistic in presence of high-impact extreme events. Therefore, this paper focuses on developing a three-level defender–attacker–defender model to solve resilience-driven optimal sizing and pre-positioning problems of mobile energy storage systems in networked microgrids with decentralized control. The upper level problem is formulated to obtain optimization results against a certain contingency, while the middle level problem and the lower level problem are merged as a subproblem to select a contingency that can cause the most severe damage. An adaptive genetic algorithm has been employed to search for sizing and positioning decisions and capture various potential attack plans, while a decentralized control approach based on consensus algorithm and linearized AC optimal power flow are utilized to model microgrid operations and capture technical constraints relating to voltage and power loss. Uncertainties relating to renewable energy sources and load profiles are incorporated into the model via stochastic programming. Extensive case studies considering meshed networks and load discrimination into essential/non-essential are developed to demonstrate the effectiveness of the proposed model on accurate decision making of capacities and initial locations.

Suggested Citation

  • Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012319
    DOI: 10.1016/j.apenergy.2021.117921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsianikas, Stamatis & Yousefi, Nooshin & Zhou, Jian & Rodgers, Mark D. & Coit, David, 2021. "A storage expansion planning framework using reinforcement learning and simulation-based optimization," Applied Energy, Elsevier, vol. 290(C).
    2. Ghadi, Mojtaba Jabbari & Rajabi, Amin & Ghavidel, Sahand & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    4. Thomas, Dimitrios & D’Hoop, Gaspard & Deblecker, Olivier & Genikomsakis, Konstantinos N. & Ioakimidis, Christos S., 2020. "An integrated tool for optimal energy scheduling and power quality improvement of a microgrid under multiple demand response schemes," Applied Energy, Elsevier, vol. 260(C).
    5. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    6. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    7. Lin, Yanling & Bie, Zhaohong, 2018. "Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding," Applied Energy, Elsevier, vol. 210(C), pages 1266-1279.
    8. Yin, Linfei & Sun, Zhixiang, 2021. "Multi-layer distributed multi-objective consensus algorithm for multi-objective economic dispatch of large-scale multi-area interconnected power systems," Applied Energy, Elsevier, vol. 300(C).
    9. Gao, Hongjun & Xu, Song & Liu, Youbo & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Decentralized optimal operation model for cooperative microgrids considering renewable energy uncertainties," Applied Energy, Elsevier, vol. 262(C).
    10. Sayed, Ahmed R. & Wang, Cheng & Bi, Tianshu, 2019. "Resilient operational strategies for power systems considering the interactions with natural gas systems," Applied Energy, Elsevier, vol. 241(C), pages 548-566.
    11. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    12. Dong, Chaoyu & Gao, Qingbin & Xiao, Qiao & Chu, Ronghe & Jia, Hongjie, 2020. "Spectrum-domain stability assessment and intrinsic oscillation for aggregated mobile energy storage in grid frequency regulation," Applied Energy, Elsevier, vol. 276(C).
    13. Han, Gwangwoo & Kwon, YongKeun & Kim, Joong Bae & Lee, Sanghun & Bae, Joongmyeon & Cho, EunAe & Lee, Bong Jae & Cho, Sungbaek & Park, Jinwoo, 2020. "Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell," Applied Energy, Elsevier, vol. 259(C).
    14. Mishra, Sakshi & Anderson, Kate & Miller, Brian & Boyer, Kyle & Warren, Adam, 2020. "Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies," Applied Energy, Elsevier, vol. 264(C).
    15. Brandao, Danilo I. & de Araújo, Lucas S. & Caldognetto, Tommaso & Pomilio, José A., 2018. "Coordinated control of three- and single-phase inverters coexisting in low-voltage microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2050-2060.
    16. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    17. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    18. Mehri Arsoon, Milad & Moghaddas-Tafreshi, Seyed Masoud, 2020. "Peer-to-peer energy bartering for the resilience response enhancement of networked microgrids," Applied Energy, Elsevier, vol. 261(C).
    19. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Lai, Kexing & Illindala, Mahesh & Subramaniam, Karthikeyan, 2019. "A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment," Applied Energy, Elsevier, vol. 235(C), pages 204-218.
    21. Zhou, Yutian & Panteli, Mathaios & Moreno, Rodrigo & Mancarella, Pierluigi, 2018. "System-level assessment of reliability and resilience provision from microgrids," Applied Energy, Elsevier, vol. 230(C), pages 374-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Tingjun & Han, Xiaoqing & Wu, Wenchuan & Sun, Hongbin, 2023. "Robust expansion planning and hardening strategy of meshed multi-energy distribution networks for resilience enhancement," Applied Energy, Elsevier, vol. 341(C).
    2. Masoumeh Sharifpour & Mohammad Taghi Ameli & Hossein Ameli & Goran Strbac, 2023. "A Resilience-Oriented Approach for Microgrid Energy Management with Hydrogen Integration during Extreme Events," Energies, MDPI, vol. 16(24), pages 1-18, December.
    3. Ying-Che Hung & Chien-Hua Ho & Liang-Yü Chen & Shih-Chieh Ma & Te-I Liu & Yi-Chen Shen, 2023. "Using a Low-Temperature Pyrolysis Device for Polymeric Waste to Implement a Distributed Energy System," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    4. Sankar, Matta Mani & Chatterjee, Kalyan, 2023. "A posteriori multiobjective approach for techno-economic allocation of PV and BES units in a distribution system hosting PHEVs," Applied Energy, Elsevier, vol. 351(C).
    5. Hossein Azarinfar & Mohsen Khosravi & Kiomars Sabzevari & Maciej Dzikuć, 2024. "Stochastic Economic–Resilience Management of Combined Cooling, Heat, and Power-Based Microgrids in a Multi-Objective Approach," Sustainability, MDPI, vol. 16(3), pages 1-27, January.
    6. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    7. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Jeon, Soi & Choi, Dae-Hyun, 2022. "Joint optimization of Volt/VAR control and mobile energy storage system scheduling in active power distribution networks under PV prediction uncertainty," Applied Energy, Elsevier, vol. 310(C).
    9. Venkatasubramanian, Balaji V. & Panteli, Mathaios, 2023. "Power system resilience during 2001–2022: A bibliometric and correlation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Muhammad Irfan & Sara Deilami & Shujuan Huang & Binesh Puthen Veettil, 2023. "Rooftop Solar and Electric Vehicle Integration for Smart, Sustainable Homes: A Comprehensive Review," Energies, MDPI, vol. 16(21), pages 1-29, October.
    11. Fernando García-Muñoz & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas, 2022. "DC Optimal Power Flow Model to Assess the Irradiance Effect on the Sizing and Profitability of the PV-Battery System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    12. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    13. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    15. Antonio E. C. Momesso & Pedro H. A. Barra & Pedro I. N. Barbalho & Eduardo N. Asada & José C. M. Vieira & Denis V. Coury, 2024. "An Impact Assessment of a Transportable BESS on the Protection of Conventional Distribution Systems," Energies, MDPI, vol. 17(16), pages 1-15, August.
    16. Zhang, Lu & Yu, Shunjiang & Zhang, Bo & Li, Gen & Cai, Yongxiang & Tang, Wei, 2023. "Outage management of hybrid AC/DC distribution systems: Co-optimize service restoration with repair crew and mobile energy storage system dispatch," Applied Energy, Elsevier, vol. 335(C).
    17. Li, Zhengmao & Xu, Yan & Wang, Peng & Xiao, Gaoxi, 2023. "Coordinated preparation and recovery of a post-disaster Multi-energy distribution system considering thermal inertia and diverse uncertainties," Applied Energy, Elsevier, vol. 336(C).
    18. Rahimi Sadegh, Ainollah & Setayesh Nazar, Mehrdad & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal resilient allocation of mobile energy storages considering coordinated microgrids biddings," Applied Energy, Elsevier, vol. 328(C).
    19. Meng, He & Jia, Hongjie & Xu, Tao & Wei, Wei & Wu, Yuhan & Liang, Lemeng & Cai, Shuqi & Liu, Zuozheng & Wang, Rujing & Li, Mengchao, 2022. "Optimal configuration of cooperative stationary and mobile energy storage considering ambient temperature: A case for Winter Olympic Game," Applied Energy, Elsevier, vol. 325(C).
    20. Haghshenas, Morteza & Hooshmand, Rahmat-Allah & Gholipour, Mehdi, 2024. "A novel cost-based optimization model for electric power distribution systems resilience improvement under dust storms," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    21. Souto, Laiz & Parisio, Alessandra & Taylor, Philip C., 2024. "MPC-based framework incorporating pre-disaster and post-disaster actions and transportation network constraints for weather-resilient power distribution networks," Applied Energy, Elsevier, vol. 362(C).
    22. Mohseni, Soheil & Khalid, Roomana & Brent, Alan C., 2023. "Stochastic, resilience-oriented optimal sizing of off-grid microgrids considering EV-charging demand response: An efficiency comparison of state-of-the-art metaheuristics," Applied Energy, Elsevier, vol. 341(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
    2. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    3. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    4. Wang, Yi & Rousis, Anastasios Oulis & Strbac, Goran, 2020. "On microgrids and resilience: A comprehensive review on modeling and operational strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Qiu, Dawei & Wang, Yi & Zhang, Tingqi & Sun, Mingyang & Strbac, Goran, 2023. "Hierarchical multi-agent reinforcement learning for repair crews dispatch control towards multi-energy microgrid resilience," Applied Energy, Elsevier, vol. 336(C).
    7. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    8. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    9. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    12. Zhou, Dezhi & Wu, Chuantao & Sui, Quan & Lin, Xiangning & Li, Zhengtian, 2022. "A novel all-electric-ship-integrated energy cooperation coalition for multi-island microgrids," Applied Energy, Elsevier, vol. 320(C).
    13. Nelson, James & Johnson, Nathan G. & Fahy, Kelsey & Hansen, Timothy A., 2020. "Statistical development of microgrid resilience during islanding operations," Applied Energy, Elsevier, vol. 279(C).
    14. Gonzalez-Reina, Antonio Enrique & Garcia-Torres, Felix & Girona-Garcia, Victor & Sanchez-Sanchez-de-Puerta, Alvaro & Jimenez-Romero, F.J. & Jimenez-Hornero, Jorge E., 2024. "Cooperative model predictive control for avoiding critical instants of energy resilience in networked microgrids," Applied Energy, Elsevier, vol. 369(C).
    15. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
    16. Zare Oskouei, Morteza & Mehrjerdi, Hasan & Babazadeh, Davood & Teimourzadeh Baboli, Payam & Becker, Christian & Palensky, Peter, 2022. "Resilience-oriented operation of power systems: Hierarchical partitioning-based approach," Applied Energy, Elsevier, vol. 312(C).
    17. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    18. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    19. Zamani Gargari, Milad & Tarafdar Hagh, Mehrdad & Ghassem Zadeh, Saeid, 2023. "Preventive scheduling of a multi-energy microgrid with mobile energy storage to enhance the resiliency of the system," Energy, Elsevier, vol. 263(PC).
    20. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.