IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6857-d1453421.html
   My bibliography  Save this article

Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications

Author

Listed:
  • Zhuoxin Lu

    (Electrical Engineering Department, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Xiaoyuan Xu

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Zheng Yan

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Dong Han

    (Electrical Engineering Department, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Shiwei Xia

    (Electrical Engineering Department, North China Electric Power University, Beijing 102206, China)

Abstract

In the high-renewable penetrated power grid, mobile energy-storage systems (MESSs) enhance power grids’ security and economic operation by using their flexible spatiotemporal energy scheduling ability. It is a crucial flexible scheduling resource for realizing large-scale renewable energy consumption in the power system. However, the spatiotemporal regulation of MESS is affected by the complex operating environments in the power and transportation networks. Numerous challenges exist in modeling and decision-making processes, such as incorporating uncertainty into the optimization model and handling a considerable quantity of integer decision variables. This paper provides a systematic review of MESS technology in the power grid. The basic modeling methods of MESS in the coupled transportation and power network are introduced. This study provides a detailed analysis of mobility modeling approaches, highlighting their impact on the accuracy and efficiency of MESS optimization scheduling. The applications of MESS in the power grid are presented, including the MESS planning, operation, and business model. The key challenges encountered by MESS in power grid operations across various scenarios are analyzed. The corresponding modeling methods, solution algorithms, and typical demonstration projects are summarized. At last, this study also proposes the MESS system research and application prospects based on the consideration of its promotion.

Suggested Citation

  • Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6857-:d:1453421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    2. Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
    3. Jeon, Soi & Choi, Dae-Hyun, 2022. "Joint optimization of Volt/VAR control and mobile energy storage system scheduling in active power distribution networks under PV prediction uncertainty," Applied Energy, Elsevier, vol. 310(C).
    4. Wu, Hao & Xie, Yunyun & Xu, Yan & Wu, Qiuwei & Yu, Chen & Sun, Jinsheng, 2022. "Resilient scheduling of MESSs and RCs for distribution system restoration considering the forced cut-off of wind power," Energy, Elsevier, vol. 244(PB).
    5. Siddique, Muhammad Bilal & Thakur, Jagruti, 2020. "Assessment of curtailed wind energy potential for off-grid applications through mobile battery storage," Energy, Elsevier, vol. 201(C).
    6. Chang, Weiguang & Dong, Wei & Yang, Qiang, 2023. "Day-ahead bidding strategy of cloud energy storage serving multiple heterogeneous microgrids in the electricity market," Applied Energy, Elsevier, vol. 336(C).
    7. Meng, He & Jia, Hongjie & Xu, Tao & Wei, Wei & Wu, Yuhan & Liang, Lemeng & Cai, Shuqi & Liu, Zuozheng & Wang, Rujing & Li, Mengchao, 2022. "Optimal configuration of cooperative stationary and mobile energy storage considering ambient temperature: A case for Winter Olympic Game," Applied Energy, Elsevier, vol. 325(C).
    8. Dong, Chaoyu & Gao, Qingbin & Xiao, Qiao & Chu, Ronghe & Jia, Hongjie, 2020. "Spectrum-domain stability assessment and intrinsic oscillation for aggregated mobile energy storage in grid frequency regulation," Applied Energy, Elsevier, vol. 276(C).
    9. Ghasemi, Sasan & Moshtagh, Jamal, 2022. "Distribution system restoration after extreme events considering distributed generators and static energy storage systems with mobile energy storage systems dispatch in transportation systems," Applied Energy, Elsevier, vol. 310(C).
    10. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    11. Jill W. Moraski & Natalie D. Popovich & Amol A. Phadke, 2023. "Leveraging rail-based mobile energy storage to increase grid reliability in the face of climate uncertainty," Nature Energy, Nature, vol. 8(7), pages 736-746, July.
    12. van Leeuwen, Gijs & AlSkaif, Tarek & Gibescu, Madeleine & van Sark, Wilfried, 2020. "An integrated blockchain-based energy management platform with bilateral trading for microgrid communities," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lu & Yu, Shunjiang & Zhang, Bo & Li, Gen & Cai, Yongxiang & Tang, Wei, 2023. "Outage management of hybrid AC/DC distribution systems: Co-optimize service restoration with repair crew and mobile energy storage system dispatch," Applied Energy, Elsevier, vol. 335(C).
    2. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    3. Souto, Laiz & Parisio, Alessandra & Taylor, Philip C., 2024. "MPC-based framework incorporating pre-disaster and post-disaster actions and transportation network constraints for weather-resilient power distribution networks," Applied Energy, Elsevier, vol. 362(C).
    4. Jeon, Soi & Choi, Dae-Hyun, 2022. "Joint optimization of Volt/VAR control and mobile energy storage system scheduling in active power distribution networks under PV prediction uncertainty," Applied Energy, Elsevier, vol. 310(C).
    5. Venkatasubramanian, Balaji V. & Panteli, Mathaios, 2023. "Power system resilience during 2001–2022: A bibliometric and correlation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Sadeghi, M. & Kalantar, M., 2023. "Fully decentralized multi-agent coordination scheme in smart distribution restoration: Multilevel consensus," Applied Energy, Elsevier, vol. 350(C).
    7. Mehrjerdi, Hasan & Mahdavi, Sajad & Hemmati, Reza, 2021. "Resilience maximization through mobile battery storage and diesel DG in integrated electrical and heating networks," Energy, Elsevier, vol. 237(C).
    8. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Shen, Yueqing & Qian, Tong & Li, Weiwei & Zhao, Wei & Tang, Wenhu & Chen, Xingyu & Yu, Zeyuan, 2023. "Mobile energy storage systems with spatial–temporal flexibility for post-disaster recovery of power distribution systems: A bilevel optimization approach," Energy, Elsevier, vol. 282(C).
    10. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Li, Yutong & Hou, Jian & Yan, Gangfeng, 2024. "Exploration-enhanced multi-agent reinforcement learning for distributed PV-ESS scheduling with incomplete data," Applied Energy, Elsevier, vol. 359(C).
    12. Antonio E. C. Momesso & Pedro H. A. Barra & Pedro I. N. Barbalho & Eduardo N. Asada & José C. M. Vieira & Denis V. Coury, 2024. "An Impact Assessment of a Transportable BESS on the Protection of Conventional Distribution Systems," Energies, MDPI, vol. 17(16), pages 1-15, August.
    13. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    14. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    15. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    16. Yan Liu & Chao Shang, 2022. "Application of Blockchain Technology in Agricultural Water Rights Trade Management," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    17. Kabir, Farzana & Yu, Nanpeng & Gao, Yuanqi & Wang, Wenyu, 2023. "Deep reinforcement learning-based two-timescale Volt-VAR control with degradation-aware smart inverters in power distribution systems," Applied Energy, Elsevier, vol. 335(C).
    18. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    19. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    20. Anthony D Stephens & David R Walwyn, 2020. "Predicting the Performance of a Future United Kingdom Grid and Wind Fleet When Providing Power to a Fleet of Battery Electric Vehicles," Papers 2101.01065, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6857-:d:1453421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.