IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923012151.html
   My bibliography  Save this article

A posteriori multiobjective approach for techno-economic allocation of PV and BES units in a distribution system hosting PHEVs

Author

Listed:
  • Sankar, Matta Mani
  • Chatterjee, Kalyan

Abstract

This paper proposes a posteriori multiobjective approach to effectively integrate photovoltaic (PV) units into the distribution network. PV units are inherently non-dispatchable sources due to the intermittent nature of solar irradiance. To address this limitation, battery energy storage (BES) units are employed to support the PV units, thereby transforming them into dispatchable sources. The objective of this study is to optimally allocate dispatchable PV-BES units within a distribution network that accommodates plug-in hybrid electric vehicles (PHEVs). The PHEVs are modelled considering stochastic parameters at three different demand response levels. A multiobjective optimization problem is formulated to address the conflicting technical and economic objectives associated with the allocation of PV-BES units. The multiobjective manta ray foraging optimizer algorithm is utilized for solving the multiobjective optimization problem. Additionally, the technique for order of preference by similarity to ideal solution is used to identify the best trade-off solution, and multiple solutions are presented based on the decision-makers preferences regarding the conflicting objectives under consideration. The proposed approach is validated on 33-bus and 69-bus distribution networks, and extensive case studies are conducted to showcase the advantages of the proposed methodology.

Suggested Citation

  • Sankar, Matta Mani & Chatterjee, Kalyan, 2023. "A posteriori multiobjective approach for techno-economic allocation of PV and BES units in a distribution system hosting PHEVs," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012151
    DOI: 10.1016/j.apenergy.2023.121851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    2. Erfan Babaee Tirkolaee & Zahra Dashtian & Gerhard-Wilhelm Weber & Hana Tomaskova & Mehdi Soltani & Nasim Sadat Mousavi, 2021. "An Integrated Decision-Making Approach for Green Supplier Selection in an Agri-Food Supply Chain: Threshold of Robustness Worthiness," Mathematics, MDPI, vol. 9(11), pages 1-30, June.
    3. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    4. Sachin J. Chede & Bhushan R. Adavadkar & Aditya S. Patil & Harsh K. Chhatriwala & Mohit P. Keswani, 2021. "Material selection for design of powered hand truck using TOPSIS," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 39(2), pages 236-246.
    5. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    6. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, He & Jia, Hongjie & Xu, Tao & Wei, Wei & Wu, Yuhan & Liang, Lemeng & Cai, Shuqi & Liu, Zuozheng & Wang, Rujing & Li, Mengchao, 2022. "Optimal configuration of cooperative stationary and mobile energy storage considering ambient temperature: A case for Winter Olympic Game," Applied Energy, Elsevier, vol. 325(C).
    2. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    3. Monteiro, Raul V.A. & Guimarães, Geraldo C. & Silva, Fernando Bento & da Silva Teixeira, Raoni F. & Carvalho, Bismarck C. & Finazzi, Antônio de P. & de Vasconcellos, Arnulfo B., 2018. "A medium-term analysis of the reduction in technical losses on distribution systems with variable demand using artificial neural networks: An Electrical Energy Storage approach," Energy, Elsevier, vol. 164(C), pages 1216-1228.
    4. Abhinav Kumar & Sanjay Kumar & Umesh Kumar Sinha & Aashish Kumar Bohre & Akshay Kumar Saha, 2024. "Optimal Clean Energy Resource Allocation in Balanced and Unbalanced Operation of Sustainable Electrical Energy Distribution Networks," Energies, MDPI, vol. 17(18), pages 1-52, September.
    5. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    6. Tao Xu & He Meng & Jie Zhu & Wei Wei & He Zhao & Han Yang & Zijin Li & Yuhan Wu, 2021. "Optimal Capacity Allocation of Energy Storage in Distribution Networks Considering Active/Reactive Coordination," Energies, MDPI, vol. 14(6), pages 1-24, March.
    7. Wagner A. Vilela Junior & Antonio P. Coimbra & Gabriel A. Wainer & Joao Caetano Neto & Jose A. G. Cararo & Marcio R. C. Reis & Paulo V. Santos & Wesley P. Calixto, 2021. "Analysis and Adequacy Methodology for Voltage Violations in Distribution Power Grid," Energies, MDPI, vol. 14(14), pages 1-21, July.
    8. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    9. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    10. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    11. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    12. Elseify, Mohamed A. & Hashim, Fatma A. & Hussien, Abdelazim G. & Kamel, Salah, 2024. "Single and multi-objectives based on an improved golden jackal optimization algorithm for simultaneous integration of multiple capacitors and multi-type DGs in distribution systems," Applied Energy, Elsevier, vol. 353(PA).
    13. Fernando García-Muñoz & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas, 2022. "DC Optimal Power Flow Model to Assess the Irradiance Effect on the Sizing and Profitability of the PV-Battery System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    14. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    15. Haghshenas, Morteza & Hooshmand, Rahmat-Allah & Gholipour, Mehdi, 2024. "A novel cost-based optimization model for electric power distribution systems resilience improvement under dust storms," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    16. Liu, Aaron & Miller, Wendy & Cholette, Michael E. & Ledwich, Gerard & Crompton, Glenn & Li, Yong, 2021. "A multi-dimension clustering-based method for renewable energy investment planning," Renewable Energy, Elsevier, vol. 172(C), pages 651-666.
    17. Bianchi, M. & Branchini, L. & Ferrari, C. & Melino, F., 2014. "Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector," Applied Energy, Elsevier, vol. 136(C), pages 805-816.
    18. Han, Bing & Zhang, Ying & Wang, Song & Park, Yongshin, 2023. "The efficient and stable planning for interrupted supply chain with dual‐sourcing strategy: a robust optimization approach considering decision maker's risk attitude," Omega, Elsevier, vol. 115(C).
    19. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    20. Jeon, Soi & Choi, Dae-Hyun, 2022. "Joint optimization of Volt/VAR control and mobile energy storage system scheduling in active power distribution networks under PV prediction uncertainty," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.