IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003969.html
   My bibliography  Save this article

MPC-based framework incorporating pre-disaster and post-disaster actions and transportation network constraints for weather-resilient power distribution networks

Author

Listed:
  • Souto, Laiz
  • Parisio, Alessandra
  • Taylor, Philip C.

Abstract

Enhancing power system resilience to extreme weather requires an effective coordination of pre-disaster preventive response actions and post-disaster repair and restoration services. In this context, this article presents a two-stage framework to enhance resilience of power distribution networks to severe weather events. It considers operating and resource constraints in interdependent power and transportation networks based on official guidance from transport appraisal studies. It also incorporates sources of information available in a smart city context, such as energy measurements, traffic flows, and geographical information systems. In the first stage, a pre-disaster operational planning strategy is defined to prepare the grid for a high-risk outage scenario with the objective of minimizing the value of lost loads, formulated as a mixed-integer quadratic programming model. In the second stage, a post-disaster corrective strategy is implemented over a receding time horizon to compensate for deviations between the actions computed in the first stage and the actions required to minimize power outages, embedded into a model predictive control scheme. The effectiveness of the proposed framework is demonstrated on a real-world large-scale distribution network in the United Kingdom over a range of outage scenarios. Simulation results show that the proposed framework is capable of effectively minimizing first-stage operational costs and second-stage deviations between the projected and actual load demand supply. Numerical results obtained with the proposed framework indicate that the load energy unserved is at least twice smaller than with typical practices adopted by distribution network operators and computational times take two minutes or less. Therefore, it can be effectively used by distribution network operators to ensure an appropriate level of preparedness to power outages caused by extreme weather along with prompt restoration and repair services.

Suggested Citation

  • Souto, Laiz & Parisio, Alessandra & Taylor, Philip C., 2024. "MPC-based framework incorporating pre-disaster and post-disaster actions and transportation network constraints for weather-resilient power distribution networks," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003969
    DOI: 10.1016/j.apenergy.2024.123013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    2. Ghasemi, Sasan & Moshtagh, Jamal, 2022. "Distribution system restoration after extreme events considering distributed generators and static energy storage systems with mobile energy storage systems dispatch in transportation systems," Applied Energy, Elsevier, vol. 310(C).
    3. Li, Xue & Du, Xiaoxue & Jiang, Tao & Zhang, Rufeng & Chen, Houhe, 2022. "Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events," Applied Energy, Elsevier, vol. 309(C).
    4. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    5. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    2. Zhang, Lu & Yu, Shunjiang & Zhang, Bo & Li, Gen & Cai, Yongxiang & Tang, Wei, 2023. "Outage management of hybrid AC/DC distribution systems: Co-optimize service restoration with repair crew and mobile energy storage system dispatch," Applied Energy, Elsevier, vol. 335(C).
    3. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    4. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    5. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    6. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    7. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    8. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    10. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    11. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    12. Theofilos A. Papadopoulos & Kalliopi D. Pippi & Georgios A. Barzegkar-Ntovom & Eleftherios O. Kontis & Angelos I. Nousdilis & Christos L. Athanasiadis & Georgios C. Kryonidis, 2023. "Validation of a Holistic System for Operational Analysis and Provision of Ancillary Services in Active Distribution Networks," Energies, MDPI, vol. 16(6), pages 1-27, March.
    13. Qiu, Lei & Wang, Xiaoyang & Wei, Jia, 2023. "Energy security and energy management: The role of extreme natural events," Innovation and Green Development, Elsevier, vol. 2(2).
    14. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    15. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    16. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    17. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    18. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    19. Aliana, Arnau & Chang, Miguel & Østergaard, Poul Alberg & Victoria, Marta & Andersen, Anders N., 2022. "Performance assessment of using various solar radiation data in modelling large-scale solar thermal systems integrated in district heating networks," Renewable Energy, Elsevier, vol. 190(C), pages 699-712.
    20. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.