IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921010023.html
   My bibliography  Save this article

Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies

Author

Listed:
  • Mansour-Saatloo, Amin
  • Pezhmani, Yasin
  • Mirzaei, Mohammad Amin
  • Mohammadi-Ivatloo, Behnam
  • Zare, Kazem
  • Marzband, Mousa
  • Anvari-Moghaddam, Amjad

Abstract

Nowadays, the enormous rising demand for hydrogen fuel cell vehicles (HFCVs) and electric vehicles (EVs) in the transportation sector has a significant contribution in growing of multi-energy microgrids (MEMGs) accompanied by hydrogen refueling stations (HRSs), EV parking lots (EVPLs) and power-to-hydrogen (P2H2) technologies. The competency to enhance the efficiency and the reliability in MEMG systems leads to form a networked structure called multi-microgrids (MMG). In this paper, a robust decentralized energy management framework is proposed for the optimal day-ahead scheduling of a set of interconnected hydrogen, heat, and power-based microgrids (MGs) in the presence of HRSs and EVPLs. The proposed MMG is a collaborative structure of hydrogen provider company (HPC) and electricity markets with novel technologies such as power-to-heat (P2H), power-to-hydrogen (P2H2), combined heat and power (CHP) units, multiple energy storages and demand response to improve the system flexibility in meeting multi-energy demands. The necessity of data privacy preservation methods for MGs has emerged when the interconnected MGs are operated as an MMG to satisfy different energy demands with minimum cost. Therefore, an iterative-based algorithm called the alternating direction method of multipliers (ADMM) is utilized to decompose the structure of the scheduling problem to minimize the total daily cost of the MMG system while protecting the data privacy of MEMGs. In the proposed structure, the robust optimization model is able to manage the uncertainty by considering the worst-case scenario for electricity price in different conservativeness levels as MEMGs are sensitive to electricity price fluctuations. Finally, the simulation results represent the effectiveness of the proposed decentralized model under the worst case of electricity market price to meet the demand for electricity, heat, and hydrogen.

Suggested Citation

  • Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010023
    DOI: 10.1016/j.apenergy.2021.117635
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    2. Robledo, Carla B. & Oldenbroek, Vincent & Abbruzzese, Francesca & van Wijk, Ad J.M., 2018. "Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building," Applied Energy, Elsevier, vol. 215(C), pages 615-629.
    3. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    4. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    5. Sung-Ho Park & Akhtar Hussain & Hak-Man Kim, 2019. "Impact Analysis of Survivability-Oriented Demand Response on Islanded Operation of Networked Microgrids with High Penetration of Renewables," Energies, MDPI, vol. 12(3), pages 1-22, January.
    6. Alavi, Farid & Park Lee, Esther & van de Wouw, Nathan & De Schutter, Bart & Lukszo, Zofia, 2017. "Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks," Applied Energy, Elsevier, vol. 192(C), pages 296-304.
    7. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    8. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    9. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    11. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    12. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    13. Ju, Liwei & Tan, Qinliang & Lin, Hongyu & Mei, Shufang & Li, Nan & Lu, Yan & Wang, Yao, 2020. "A two-stage optimal coordinated scheduling strategy for micro energy grid integrating intermittent renewable energy sources considering multi-energy flexible conversion," Energy, Elsevier, vol. 196(C).
    14. Vahid Amir & Shahram Jadid & Mehdi Ehsan, 2017. "Probabilistic Optimal Power Dispatch in Multi-Carrier Networked Microgrids under Uncertainties," Energies, MDPI, vol. 10(11), pages 1-21, November.
    15. Zheng, Weiye & Hill, David J., 2021. "Incentive-based coordination mechanism for distributed operation of integrated electricity and heat systems," Applied Energy, Elsevier, vol. 285(C).
    16. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    17. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
    2. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    3. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    4. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    5. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    6. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Shiping Geng & Gengqi Wu & Caixia Tan & Dongxiao Niu & Xiaopeng Guo, 2021. "Multi-Objective Optimization of a Microgrid Considering the Uncertainty of Supply and Demand," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    8. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    9. Zhang, Guodao & Ge, Yisu & Pan, Xiaotian & Zheng, Yun & Yang, Yanhong, 2023. "Hybrid robust-stochastic multi-objective optimization of combined cooling, heating, hydrogen and power-based microgrids," Energy, Elsevier, vol. 274(C).
    10. Wu, Kunming & Li, Qiang & Chen, Ziyu & Lin, Jiayang & Yi, Yongli & Chen, Minyou, 2021. "Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems," Energy, Elsevier, vol. 222(C).
    11. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    13. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    14. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    15. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).
    16. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    17. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).
    18. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    19. Zhou, Dezhi & Wu, Chuantao & Sui, Quan & Lin, Xiangning & Li, Zhengtian, 2022. "A novel all-electric-ship-integrated energy cooperation coalition for multi-island microgrids," Applied Energy, Elsevier, vol. 320(C).
    20. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.