IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics1364032123007207.html
   My bibliography  Save this article

Power system resilience during 2001–2022: A bibliometric and correlation analysis

Author

Listed:
  • Venkatasubramanian, Balaji V.
  • Panteli, Mathaios

Abstract

Research on power system resilience has increased due to frequent natural hazards. Many reviews have been performed on power system resilience, focusing on specific topics such as the application of energy storage systems and microgrids for resilience enhancement. To comprehensively analyze the work carried out on power system resilience, this paper presents a methodology to perform quantitative analyses that combines bibliometric and correlation analyses. For this reason, 851 research publications from popular databases, namely Scopus and Web of Science, spanning from 2001 to 2022, were obtained for analysis. In the quantitative analysis, bibliometric measures are evaluated and analyzed to identify the most productive elements (e.g., countries, papers, journals, and institutions), keyword co-occurrences, and track the thematic evolution of authors’ keywords. Additionally, hazard metrics such as risk against natural hazards and word count of natural hazards are proposed to reflect the event-specific risk level of a country and its progress in event-specific resilience research. These metrics are later utilized to perform correlation analyses along with bibliometric measures. This correlation aims to identify lesser-explored natural hazards and countries with the potential for event-specific resilience studies. Overall, this study offers insights into power system resilience trends and emerging areas. It emphasizes less-attended, highly exposed natural hazards, helping prioritize research for future resilient models to address their unique challenges.

Suggested Citation

  • Venkatasubramanian, Balaji V. & Panteli, Mathaios, 2023. "Power system resilience during 2001–2022: A bibliometric and correlation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123007207
    DOI: 10.1016/j.rser.2023.113862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Toroghi, Shahaboddin Sean H. & Thomas, Valerie M., 2020. "A framework for the resilience analysis of electric infrastructure systems including temporary generation systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    4. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    5. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    6. Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
    7. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Moradijoz, Mahnaz & Moradijoz, Saeed & Moghaddam, Mohsen Parsa & Haghifam, Mahmoud-Reza, 2020. "Flexibility enhancement in active distribution networks through a risk-based optimal placement of sectionalizing switches," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Venkateswaran V, Balaji & Saini, Devender Kumar & Sharma, Madhu, 2021. "Techno-economic hardening strategies to enhance distribution system resilience against earthquake," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venkateswaran V, Balaji & Saini, Devender Kumar & Sharma, Madhu, 2021. "Techno-economic hardening strategies to enhance distribution system resilience against earthquake," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    5. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    7. Zhang, Lu & Yu, Shunjiang & Zhang, Bo & Li, Gen & Cai, Yongxiang & Tang, Wei, 2023. "Outage management of hybrid AC/DC distribution systems: Co-optimize service restoration with repair crew and mobile energy storage system dispatch," Applied Energy, Elsevier, vol. 335(C).
    8. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Yang, Bofan & Zhang, Lin & Zhang, Bo & Wang, Wenfeng & Zhang, Minglinag, 2021. "Resilience Metric of Equipment System: Theory, Measurement and Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    12. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    14. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    15. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    16. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    17. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    18. Hasanzad, Fardin & Rastegar, Hasan, 2022. "Application of optimal hardening for improving resilience of integrated power and natural gas system in case of earthquake," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Gholizadeh, N. & Hosseinian, S.H. & Abedi, M. & Nafisi, H. & Siano, P., 2022. "Optimal placement of fuses and switches in active distribution networks using value-based MINLP," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123007207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.