IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1374-d1356036.html
   My bibliography  Save this article

State-of-Health Estimation for Industrial H 2 Electrolyzers with Transfer Linear Regression

Author

Listed:
  • Xuqian Yan

    (Siemens Energy Global GmbH & Co. KG, 81739 Munich, Germany
    Department of Computing Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany)

  • Carlo Locci

    (Siemens Energy Global GmbH & Co. KG, 81739 Munich, Germany)

  • Florian Hiss

    (Siemens Energy Global GmbH & Co. KG, 81739 Munich, Germany)

  • Astrid Nieße

    (Department of Computing Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany)

Abstract

Water electrolysis to generate green hydrogen is the key to decarbonization. Tracking the state-of-health of electrolyzers is fundamental to ensuring their economical and safe operation. This paper addresses the challenge of quantifying the state-of-health of electrolyzers, which is complicated by the influence of operating conditions. The existing approaches require stringent control of operating conditions, such as following a predefined current profile and maintaining a constant temperature, which is impractical for industrial applications. We propose a data-driven method that corrects the measured voltage under arbitrary operating conditions to a reference condition, serving as a state-of-health indicator for electrolyzers. The method involves fitting a voltage model to map the relationship between voltage and operating conditions and then using this model to calculate the voltage under predefined reference conditions. Our approach utilizes an empirical voltage model, validated with actual industrial electrolyzer operation data. We further introduce a transfer linear regression algorithm to tackle model fitting difficulties with limited data coverage. Validation on synthetic data confirms the algorithm’s effectiveness in capturing the true model coefficients, and application on actual operation data demonstrates its ability to provide stable state-of-health estimations. This research offers a practical solution for the industry to continuously monitor electrolyzer degradation without the need for stringent control of operating conditions.

Suggested Citation

  • Xuqian Yan & Carlo Locci & Florian Hiss & Astrid Nieße, 2024. "State-of-Health Estimation for Industrial H 2 Electrolyzers with Transfer Linear Regression," Energies, MDPI, vol. 17(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1374-:d:1356036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Demir, Sumeyra & Mincev, Krystof & Kok, Koen & Paterakis, Nikolaos G., 2021. "Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting," Applied Energy, Elsevier, vol. 304(C).
    2. Liu, Yingchao & Hu, Xiaofeng & Zhang, Wenjuan, 2019. "Remaining useful life prediction based on health index similarity," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 502-510.
    3. Gross, Samuel M. & Tibshirani, Robert, 2016. "Data Shared Lasso: A novel tool to discover uplift," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 226-235.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Pengfei & Zhao, Shuai & Chen, Shaowei & Li, Yong, 2021. "A generalized remaining useful life prediction method for complex systems based on composite health indicator," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
    3. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
    5. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    6. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "Parallel State Fusion LSTM-based Early-cycle Stage Lithium-ion Battery RUL Prediction Under Lebesgue Sampling Framework," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    8. Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
    9. Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
    10. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    12. E. Ollier & V. Viallon, 2017. "Regression modelling on stratified data with the lasso," Biometrika, Biometrika Trust, vol. 104(1), pages 83-96.
    13. Zachary F. Fisher & Younghoon Kim & Barbara L. Fredrickson & Vladas Pipiras, 2022. "Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 1-29, June.
    14. Jain, Amit Kumar & Lad, Bhupesh Kumar, 2020. "Prognosticating RULs while exploiting the future characteristics of operating profiles," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Chen, Zhiqiang & Li, Jianbin & Cheng, Long & Liu, Xiufeng, 2023. "Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation," Applied Energy, Elsevier, vol. 334(C).
    16. Nikhil M. Thoppil & V. Vasu & C. S. P. Rao, 2021. "Health indicator construction and remaining useful life estimation for mechanical systems using vibration signal prognostics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 1001-1010, October.
    17. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    18. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    19. Zhang, Sen-Ju & Kang, Rui & Lin, Yan-Hui, 2021. "Remaining useful life prediction for degradation with recovery phenomenon based on uncertain process," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    20. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1374-:d:1356036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.