IDEAS home Printed from https://ideas.repec.org/a/gam/jcommo/v3y2024i3p16-280d1430997.html
   My bibliography  Save this article

Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation

Author

Listed:
  • Bilgi Yilmaz

    (Department of Mathematics, Rheinland-Pfälzische Technische Universität (RPTU), 67663 Kaiserslautern, Germany
    Faculty of Science, Mathematics Department, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras, Turkey)

  • Christian Laudagé

    (Department of Mathematics, Rheinland-Pfälzische Technische Universität (RPTU), 67663 Kaiserslautern, Germany)

  • Ralf Korn

    (Department of Mathematics, Rheinland-Pfälzische Technische Universität (RPTU), 67663 Kaiserslautern, Germany)

  • Sascha Desmettre

    (Institute of Financial Mathematics and Applied Number Theory, Johannes Kepler University (JKU) Linz, 4040 Linz, Austria)

Abstract

The dynamic structure of electricity markets, where uncertainties abound due to, e.g., demand variations and renewable energy intermittency, poses challenges for market participants. We propose generative adversarial networks (GANs) to generate synthetic electricity price data. This approach aims to provide comprehensive data that accurately reflect the complexities of the actual electricity market by capturing its distribution. Consequently, we would like to equip market participants with a versatile tool for successfully dealing with strategy testing, risk model validation, and decision-making enhancement. Access to high-quality synthetic electricity price data is instrumental in cultivating a resilient and adaptive marketplace, ultimately contributing to a more knowledgeable and prepared electricity market community. In order to assess the performance of various types of GANs, we performed a numerical study on Turkey’s intraday electricity market weighted average price (IDM-WAP). As a key finding, we show that GANs can effectively generate realistic synthetic electricity prices. Furthermore, we reveal that the use of complex variants of GAN algorithms does not lead to a significant improvement in synthetic data quality. However, it requires a notable increase in computational costs.

Suggested Citation

  • Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
  • Handle: RePEc:gam:jcommo:v:3:y:2024:i:3:p:16-280:d:1430997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-2432/3/3/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-2432/3/3/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
    2. Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
    3. Thilo Meyer-Brandis & Peter Tankov, 2008. "Multi-Factor Jump-Diffusion Models Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 503-528.
    4. Demir, Sumeyra & Mincev, Krystof & Kok, Koen & Paterakis, Nikolaos G., 2021. "Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting," Applied Energy, Elsevier, vol. 304(C).
    5. Dmitry Efimov & Di Xu & Luyang Kong & Alexey Nefedov & Archana Anandakrishnan, 2020. "Using generative adversarial networks to synthesize artificial financial datasets," Papers 2002.02271, arXiv.org.
    6. Junyi Li & Xitong Wang & Yaoyang Lin & Arunesh Sinha & Micheal P. Wellman, 2020. "Generating Realistic Stock Market Order Streams," Papers 2006.04212, arXiv.org.
    7. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    2. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    3. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    4. Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
    5. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
    6. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    7. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    8. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    9. Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.
    10. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    11. Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
    12. Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
    13. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    14. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    15. Grzegorz Marcjasz, 2020. "Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme," Energies, MDPI, vol. 13(18), pages 1-18, September.
    16. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    17. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    18. Shao, Zhen & Yang, Yudie & Zheng, Qingru & Zhou, Kaile & Liu, Chen & Yang, Shanlin, 2022. "A pattern classification methodology for interval forecasts of short-term electricity prices based on hybrid deep neural networks: A comparative analysis," Applied Energy, Elsevier, vol. 327(C).
    19. Demir, Sumeyra & Mincev, Krystof & Kok, Koen & Paterakis, Nikolaos G., 2021. "Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting," Applied Energy, Elsevier, vol. 304(C).
    20. Andrea Coletta & Matteo Prata & Michele Conti & Emanuele Mercanti & Novella Bartolini & Aymeric Moulin & Svitlana Vyetrenko & Tucker Balch, 2021. "Towards Realistic Market Simulations: a Generative Adversarial Networks Approach," Papers 2110.13287, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcommo:v:3:y:2024:i:3:p:16-280:d:1430997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.