IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v303y2021ics0306261921009697.html
   My bibliography  Save this article

Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for vehicle-to-grid operation

Author

Listed:
  • Shang, Yitong
  • Yu, Hang
  • Niu, Songyan
  • Shao, Ziyun
  • Jian, Linni

Abstract

Vehicle-to-grid (V2G) technology plays an important part in achieving carbon neutrality. Hence, reducing the execution time under the real-time application becomes an urgent issue. In this paper, we develop a cyber-physical co-modeling to fulfill the fundamental insights into the internet of smart charging points (ISCP), wherein the local controllers are designed near the plug-in electric vehicles (PEVs), and are coordinated with each other. In perspective of energy dispatching, a hierarchical V2G scheduling is implemented in a distributed way to decompose the optimization problem into several sub-problems. Besides, the parallel computing is applied in the V2G problem to accelerate the speed of obtaining results. Moreover, the voltage regulation is applied near the energy coordinator with high-performance computer rather than by the local controller. In perspective of network communication, the small-world network is applied to ensure the communication efficiency and decrease the wiring costs. Besides, the privacy-preserving of both the energy coordinator and the PEV users is guaranteed by processing and storing the sensitive information of the two participants nearby. Finally, the cyber-physical co-modeling is performed in Matlab and Network Simulator 2. Results show load flatting, self-consumption of photovoltaic output, voltage regulation, and up/down regulation are achieved. Moreover, the delay of small-world network is 90.94 times faster than that of lattice network, and the cost of small-world network is nearly 500 times less than that of full mesh network. Particularly, the execution time for V2G operation at one-time interval is less than 1 s.

Suggested Citation

  • Shang, Yitong & Yu, Hang & Niu, Songyan & Shao, Ziyun & Jian, Linni, 2021. "Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for vehicle-to-grid operation," Applied Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009697
    DOI: 10.1016/j.apenergy.2021.117595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921009697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    2. Škugor, Branimir & Deur, Joško, 2016. "A bi-level optimisation framework for electric vehicle fleet charging management," Applied Energy, Elsevier, vol. 184(C), pages 1332-1342.
    3. Shang, Yitong & Liu, Man & Shao, Ziyun & Jian, Linni, 2020. "Internet of smart charging points with photovoltaic Integration: A high-efficiency scheme enabling optimal dispatching between electric vehicles and power grids," Applied Energy, Elsevier, vol. 278(C).
    4. Mehta, R. & Verma, P. & Srinivasan, D. & Yang, Jing, 2019. "Double-layered intelligent energy management for optimal integration of plug-in electric vehicles into distribution systems," Applied Energy, Elsevier, vol. 233, pages 146-155.
    5. Fathabadi, Hassan, 2020. "Novel stand-alone, completely autonomous and renewable energy based charging station for charging plug-in hybrid electric vehicles (PHEVs)," Applied Energy, Elsevier, vol. 260(C).
    6. Qiu, Dawei & Ye, Yujian & Papadaskalopoulos, Dimitrios & Strbac, Goran, 2021. "Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach," Applied Energy, Elsevier, vol. 292(C).
    7. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    8. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    9. Wu, Di & Radhakrishnan, Nikitha & Huang, Sen, 2019. "A hierarchical charging control of plug-in electric vehicles with simple flexibility model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Khaki, Behnam & Chu, Chicheng & Gadh, Rajit, 2019. "Hierarchical distributed framework for EV charging scheduling using exchange problem," Applied Energy, Elsevier, vol. 241(C), pages 461-471.
    11. Zheng, Yanchong & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2018. "A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid," Applied Energy, Elsevier, vol. 217(C), pages 1-13.
    12. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    13. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    14. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tariq, Mohd, 2021. "Experimental verification of a flexible vehicle-to-grid charger for power grid load variance reduction," Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Xiang & Yu, Hang & Shao, Ziyun & Jian, Linni, 2023. "Optimal bidding and coordinating strategy for maximal marginal revenue due to V2G operation: Distribution system operator as a key player in China's uncertain electricity markets," Energy, Elsevier, vol. 283(C).
    2. Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).
    3. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).
    2. Shang, Yitong & Liu, Man & Shao, Ziyun & Jian, Linni, 2020. "Internet of smart charging points with photovoltaic Integration: A high-efficiency scheme enabling optimal dispatching between electric vehicles and power grids," Applied Energy, Elsevier, vol. 278(C).
    3. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    4. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    5. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    6. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    7. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    8. Khaki, Behnam & Chu, Chicheng & Gadh, Rajit, 2019. "Hierarchical distributed framework for EV charging scheduling using exchange problem," Applied Energy, Elsevier, vol. 241(C), pages 461-471.
    9. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    11. Li, Mengyu & Lenzen, Manfred & Wang, Dai & Nansai, Keisuke, 2020. "GIS-based modelling of electric-vehicle–grid integration in a 100% renewable electricity grid," Applied Energy, Elsevier, vol. 262(C).
    12. Abid, Md. Shadman & Apon, Hasan Jamil & Hossain, Salman & Ahmed, Ashik & Ahshan, Razzaqul & Lipu, M.S. Hossain, 2024. "A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning," Applied Energy, Elsevier, vol. 353(PA).
    13. Kucevic, Daniel & Englberger, Stefan & Sharma, Anurag & Trivedi, Anupam & Tepe, Benedikt & Schachler, Birgit & Hesse, Holger & Srinivasan, Dipti & Jossen, Andreas, 2021. "Reducing grid peak load through the coordinated control of battery energy storage systems located at electric vehicle charging parks," Applied Energy, Elsevier, vol. 295(C).
    14. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    15. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    16. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    18. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    19. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    20. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.