IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp1332-1342.html
   My bibliography  Save this article

A bi-level optimisation framework for electric vehicle fleet charging management

Author

Listed:
  • Škugor, Branimir
  • Deur, Joško

Abstract

The paper proposes a bi-level optimisation framework for Electric Vehicle (EV) fleet charging based on a realistic EV fleet model including a transport demand sub-model. The EV fleet is described by an aggregate battery model, which is parameterised by using recorded driving cycle data of a delivery vehicle fleet. The EV fleet model is used within the inner level of the bi-level optimisation framework, where the aggregate charging power is optimised by using the dynamic programming (DP) algorithm. At the superimposed optimisation level, the final State-of-Charge (SoC) values of individual EVs being disconnected from the grid are optimised by using a multi-objective genetic algorithm-based optimisation. In each iteration of the bi-level optimisation algorithm, it is generally needed to recalculate the transport demand sub-model for the new set of final SoC values. In order to simplify this process, the transport demand is modelled by using a computationally efficient response surface method, which is based on naturalistic synthetic driving cycles and agent-based simulations of the EV model. When compared to the single-level charging optimisation approach, which assumes the final SoC values to be equal to 1 (full batteries on departure), the bi-level optimisation provides a degree of optimisation freedom more for more accurate techno-economic analyses of the integrated transport-energy system. The two approaches are compared through a simulation study of the particular delivery vehicle fleet transport-energy system.

Suggested Citation

  • Škugor, Branimir & Deur, Joško, 2016. "A bi-level optimisation framework for electric vehicle fleet charging management," Applied Energy, Elsevier, vol. 184(C), pages 1332-1342.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1332-1342
    DOI: 10.1016/j.apenergy.2016.03.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916304172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    2. Škugor, Branimir & Deur, Joško, 2015. "A novel model of electric vehicle fleet aggregate battery for energy planning studies," Energy, Elsevier, vol. 92(P3), pages 444-455.
    3. Finn, P. & Fitzpatrick, C. & Connolly, D., 2012. "Demand side management of electric car charging: Benefits for consumer and grid," Energy, Elsevier, vol. 42(1), pages 358-363.
    4. Schuller, Alexander & Flath, Christoph M. & Gottwalt, Sebastian, 2015. "Quantifying load flexibility of electric vehicles for renewable energy integration," Applied Energy, Elsevier, vol. 151(C), pages 335-344.
    5. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    6. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    7. Branimir Škugor & Joško Deur, 2016. "Delivery vehicle fleet data collection, analysis and naturalistic driving cycles synthesis," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 10(1), pages 19-39.
    8. He, Lifu & Yang, Jun & Yan, Jun & Tang, Yufei & He, Haibo, 2016. "A bi-layer optimization based temporal and spatial scheduling for large-scale electric vehicles," Applied Energy, Elsevier, vol. 168(C), pages 179-192.
    9. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    10. Cardoso, G. & Stadler, M. & Bozchalui, M.C. & Sharma, R. & Marnay, C. & Barbosa-Póvoa, A. & Ferrão, P., 2014. "Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules," Energy, Elsevier, vol. 64(C), pages 17-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dapeng Chen & Zhaoxia Jing & Huijuan Tan, 2019. "Optimal Bidding/Offering Strategy for EV Aggregators under a Novel Business Model," Energies, MDPI, vol. 12(7), pages 1-19, April.
    2. Wang, Kang & Wang, Haixin & Yang, Zihao & Feng, Jiawei & Li, Yanzhen & Yang, Junyou & Chen, Zhe, 2023. "A transfer learning method for electric vehicles charging strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 343(C).
    3. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    4. Mehta, R. & Verma, P. & Srinivasan, D. & Yang, Jing, 2019. "Double-layered intelligent energy management for optimal integration of plug-in electric vehicles into distribution systems," Applied Energy, Elsevier, vol. 233, pages 146-155.
    5. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Li, Xiaojing, 2017. "Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process," Applied Energy, Elsevier, vol. 194(C), pages 696-704.
    6. Zhang, Yaoli & Liu, Xingyu & Wei, Wenshen & Peng, Tianji & Hong, Gang & Meng, Chao, 2020. "Mobile charging: A novel charging system for electric vehicles in urban areas," Applied Energy, Elsevier, vol. 278(C).
    7. Abbasi, Mohammad Hossein & Taki, Mehrdad & Rajabi, Amin & Li, Li & Zhang, Jiangfeng, 2019. "Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach," Applied Energy, Elsevier, vol. 239(C), pages 1294-1307.
    8. Thomas Märzinger & David Wöss & Petra Steinmetz & Werner Müller & Tobias Pröll, 2021. "Novel Modelling Approach for the Calculation of the Loading Performance of Charging Stations for E-Trucks to Represent Fleet Consumption," Energies, MDPI, vol. 14(12), pages 1-15, June.
    9. Chen, Yizhong & He, Li & Li, Jing & Cheng, Xi & Lu, Hongwei, 2016. "An inexact bi-level simulation–optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, Elsevier, vol. 183(C), pages 969-983.
    10. Shang, Yitong & Yu, Hang & Niu, Songyan & Shao, Ziyun & Jian, Linni, 2021. "Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for vehicle-to-grid operation," Applied Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    2. Varone, Alberto & Heilmann, Zeno & Porruvecchio, Guido & Romanino, Alessandro, 2024. "Solar parking lot management: An IoT platform for smart charging EV fleets, using real-time data and production forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Škugor, Branimir & Deur, Joško, 2015. "Dynamic programming-based optimisation of charging an electric vehicle fleet system represented by an aggregate battery model," Energy, Elsevier, vol. 92(P3), pages 456-465.
    4. Vassileva, Iana & Campillo, Javier, 2017. "Adoption barriers for electric vehicles: Experiences from early adopters in Sweden," Energy, Elsevier, vol. 120(C), pages 632-641.
    5. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    6. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    7. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    8. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    9. Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
    10. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    11. repec:diw:diwwpp:dp1442 is not listed on IDEAS
    12. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    13. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    14. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2017. "Integrating renewable energy sources by electric vehicle fleets under uncertainty," Energy, Elsevier, vol. 141(C), pages 2145-2153.
    15. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    16. Verzijlbergh, Remco & Brancucci Martínez-Anido, Carlo & Lukszo, Zofia & de Vries, Laurens, 2014. "Does controlled electric vehicle charging substitute cross-border transmission capacity?," Applied Energy, Elsevier, vol. 120(C), pages 169-180.
    17. Minan Tang & Changyou Wang & Jiandong Qiu & Hanting Li & Xi Guo & Wenxin Sheng, 2024. "Short-Term Load Forecasting of Electric Vehicle Charging Stations Accounting for Multifactor IDBO Hybrid Models," Energies, MDPI, vol. 17(12), pages 1-19, June.
    18. Welzel, Fynn & Klinck, Carl-Friedrich & Pohlmann, Yannick & Bednarczyk, Mats, 2021. "Grid and user-optimized planning of charging processes of an electric vehicle fleet using a quantitative optimization model," Applied Energy, Elsevier, vol. 290(C).
    19. Huang, Shoujun & Yang, Jun & Li, Shanjun, 2017. "Black-Scholes option pricing strategy and risk-averse coordination for designing vehicle-to-grid reserve contracts," Energy, Elsevier, vol. 137(C), pages 325-335.
    20. Lee, Sangmin & Boomsma, Trine Krogh, 2022. "An approximate dynamic programming algorithm for short-term electric vehicle fleet operation under uncertainty," Applied Energy, Elsevier, vol. 325(C).
    21. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1332-1342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.