IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920309673.html
   My bibliography  Save this article

Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices

Author

Listed:
  • Zhou, Kaile
  • Cheng, Lexin
  • Lu, Xinhui
  • Wen, Lulu

Abstract

The electric vehicle (EV) industry has developed rapidly in the past decade, and the number of EVs has surged. When large scale EVs are connected to the power grid, the peak load of the power grid surges during the rush time of EV charging. The uncoordinated large scale of EV charging is harmful to the operation of the power system. Hence, dynamic pricing mechanisms have been proposed that use cost reduction as the motivation for EV owners to alter certain charging decisions. In this study, two optimal scheduling models for the charging of EVs, basic scheduling and recommendation models, are proposed to achieve cost minimization for EV owners in response to dynamic pricing. The basic scheduling model schedules the charging and discharging behaviours of EVs based on the connection and disconnection times of the EVs to the power grid. The costs involved in this model include the charging cost, discharging reward, degradation cost of EV battery, and parking fee. Based on the basic scheduling model, the proposed recommendation model recommends that the EV owner leave earlier to save on the parking fee, which may inconvenience the EV owner. This inconvenience is further considered in the costs, by measuring the coefficient of inconvenience to represent the time sensitivity of the EV owner. Finally, the comparison results of charging and discharging behaviours and the corresponding costs based on the two optimal scheduling models are sent to the EV owners. This can help EV owners, who have different degrees of sensitivity to time, to make optimal charging decisions. Moreover, the recommendation model can improve the utilization efficiency of charging facilities and relieve the pressure on them in the scheduling process when EVs are connected to the power grid on a large scale.

Suggested Citation

  • Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309673
    DOI: 10.1016/j.apenergy.2020.115455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Velzen, Arjan & Annema, Jan Anne & van de Kaa, Geerten & van Wee, Bert, 2019. "Proposing a more comprehensive future total cost of ownership estimation framework for electric vehicles," Energy Policy, Elsevier, vol. 129(C), pages 1034-1046.
    2. He, Yongxiu & Zhang, Qi & Pang, Yuexia, 2017. "The development pattern design of Chinese electric vehicles based on the analysis of the critical price of the life cycle cost," Energy Policy, Elsevier, vol. 109(C), pages 382-388.
    3. Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
    4. Subramanian, Vignesh & Das, Tapas K., 2019. "A two-layer model for dynamic pricing of electricity and optimal charging of electric vehicles under price spikes," Energy, Elsevier, vol. 167(C), pages 1266-1277.
    5. Xinhui Lu & Kaile Zhou & Felix T. S. Chan & Shanlin Yang, 2017. "Optimal scheduling of household appliances for smart home energy management considering demand response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1639-1653, September.
    6. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    7. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    8. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    9. Kumar, M. Satyendra & Revankar, Shripad T., 2017. "Development scheme and key technology of an electric vehicle: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1266-1285.
    10. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    11. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    12. Ou, Shiqi & Lin, Zhenhong & He, Xin & Przesmitzki, Steven, 2018. "Estimation of vehicle home parking availability in China and quantification of its potential impacts on plug-in electric vehicle ownership cost," Transport Policy, Elsevier, vol. 68(C), pages 107-117.
    13. Fang, Yingkai & Asche, Frank & Novan, Kevin, 2018. "The costs of charging Plug-in Electric Vehicles (PEVs): Within day variation in emissions and electricity prices," Energy Economics, Elsevier, vol. 69(C), pages 196-203.
    14. Rui Miao & Wenjie Huang & Donghao Pei & Xiyao Gu & Zefeng Li & Jie Zhang & Zhibin Jiang, 2016. "Research on lease and sale of electric vehicles based on value engineering," International Journal of Production Research, Taylor & Francis Journals, vol. 54(18), pages 5361-5380, September.
    15. Vora, Ashish P. & Jin, Xing & Hoshing, Vaidehi & Saha, Tridib & Shaver, Gregory & Varigonda, Subbarao & Wasynczuk, Oleg & Tyner, Wallace E., 2017. "Design-space exploration of series plug-in hybrid electric vehicles for medium-duty truck applications in a total cost-of-ownership framework," Applied Energy, Elsevier, vol. 202(C), pages 662-672.
    16. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
    17. Münzel, Christiane & Plötz, Patrick & Sprei, Frances & Gnann, Till, 2019. "How large is the effect of financial incentives on electric vehicle sales? – A global review and European analysis," Energy Economics, Elsevier, vol. 84(C).
    18. Sheldon, Tamara L. & Dua, Rubal, 2019. "Measuring the cost-effectiveness of electric vehicle subsidies," Energy Economics, Elsevier, vol. 84(C).
    19. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    20. Axsen, Jonn & Bailey, Joseph & Castro, Marisol Andrea, 2015. "Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers," Energy Economics, Elsevier, vol. 50(C), pages 190-201.
    21. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    22. Dixon, James & Andersen, Peter Bach & Bell, Keith & Træholt, Chresten, 2020. "On the ease of being green: An investigation of the inconvenience of electric vehicle charging," Applied Energy, Elsevier, vol. 258(C).
    23. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    24. Nunes, Pedro & Brito, M.C., 2017. "Displacing natural gas with electric vehicles for grid stabilization," Energy, Elsevier, vol. 141(C), pages 87-96.
    25. Zheng, Yanchong & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2018. "A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid," Applied Energy, Elsevier, vol. 217(C), pages 1-13.
    26. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    27. Moon, Saedaseul & Lee, Deok-Joo, 2019. "An optimal electric vehicle investment model for consumers using total cost of ownership: A real option approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    28. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).
    2. Yao, Zhaosheng & Wang, Zhiyuan & Ran, Lun, 2023. "Smart charging and discharging of electric vehicles based on multi-objective robust optimization in smart cities," Applied Energy, Elsevier, vol. 343(C).
    3. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    4. Phillip K. Agbesi & Rico Ruffino & Marko Hakovirta, 2023. "The development of sustainable electric vehicle business ecosystems," SN Business & Economics, Springer, vol. 3(8), pages 1-59, August.
    5. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    6. Yin, Wanjun & Ji, Jianbo & Wen, Tao & Zhang, Chao, 2023. "Study on orderly charging strategy of EV with load forecasting," Energy, Elsevier, vol. 278(C).
    7. Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
    8. Williams, B. & Bishop, D. & Hooper, G. & Chase, J.G., 2024. "Driving change: Electric vehicle charging behavior and peak loading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Nazari-Heris, Morteza & Loni, Abdolah & Asadi, Somayeh & Mohammadi-ivatloo, Behnam, 2022. "Toward social equity access and mobile charging stations for electric vehicles: A case study in Los Angeles," Applied Energy, Elsevier, vol. 311(C).
    10. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    2. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    3. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    4. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    5. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    6. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Dissecting the total cost of ownership of fully electric cars in Italy: The impact of annual distance travelled, home charging and urban driving," Research in Transportation Economics, Elsevier, vol. 80(C).
    7. Bamidele Victor Ayodele & Siti Indati Mustapa, 2020. "Life Cycle Cost Assessment of Electric Vehicles: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    8. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.
    9. Kondev, Bozhil & Dixon, James & Zhou, Zhaoqi & Sabyrbekov, Rahat & Sultanaliev, Kanat & Hirmer, Stephanie A., 2023. "Putting the foot down: Accelerating EV uptake in Kyrgyzstan," Transport Policy, Elsevier, vol. 131(C), pages 87-96.
    10. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    11. Santos, Georgina & Rembalski, Sebastian, 2021. "Do electric vehicles need subsidies in the UK?," Energy Policy, Elsevier, vol. 149(C).
    12. P, Balakumar & Ramu, Senthil Kumar & T, Vinopraba, 2024. "Optimizing electric vehicle charging in distribution networks: A dynamic pricing approach using internet of things and Bi-directional LSTM model," Energy, Elsevier, vol. 294(C).
    13. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).
    14. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    15. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    16. Nian, Victor & Hari, M.P. & Yuan, Jun, 2019. "A new business model for encouraging the adoption of electric vehicles in the absence of policy support," Applied Energy, Elsevier, vol. 235(C), pages 1106-1117.
    17. Ouyang, Danhua & Zhou, Shen & Ou, Xunmin, 2021. "The total cost of electric vehicle ownership: A consumer-oriented study of China's post-subsidy era," Energy Policy, Elsevier, vol. 149(C).
    18. Burra, Lavan T. & Sommer, Stephan & Vance, Colin, 2024. "Free-ridership in subsidies for company- and private electric vehicles," Energy Economics, Elsevier, vol. 131(C).
    19. Burra, Lavan T. & Sommer, Stephan & Vance, Colin, 2023. "Free-Ridership in Subsidies for Company- and Private Electric Vehicles," Ruhr Economic Papers 1015, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    20. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.