IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920311417.html
   My bibliography  Save this article

Internet of smart charging points with photovoltaic Integration: A high-efficiency scheme enabling optimal dispatching between electric vehicles and power grids

Author

Listed:
  • Shang, Yitong
  • Liu, Man
  • Shao, Ziyun
  • Jian, Linni

Abstract

Plug-in electric vehicles (PEVs) and renewable energy sources (RESs) can relief the stress on air pollution. Particularly, using RES for PEV energy requirement can integrate more RESs on the grid. In this paper, a vehicle-to-grid (V2G) scheme concerning on RES and edge computing, i.e. the internet of smart charging points with photovoltaics integration, is presented. Within the architecture of the scheme, each charging point equips computing and storage units, so as to store PEV sensitive information locally and conduct “burn after scheduling”. Besides, this architecture can transform the traditional large-scale V2G problem into several sub-problems, which are small enough to optimize. Based on the architecture of the scheme, an associated high-efficiency algorithm is designed. Six typical scenarios of PEV charging are elaborated and two indexes are presented to facilitate 1) the self-consumption of photovoltaics energy by PEV charging and 2) the peak-shaving and valley-filling of net load. Additionally, voltage regulation and real-time control are applied to ensure the security of the distribution grid and mitigate the uncertain conditions. Finally, compared with uncoordinated charging, the short-time scale simulation realizes the peak-shaving and valley-filling by 17.54% and 12.42%, respectively; and the amount of self-consumption of photovoltaics energy increases by 258.74%. Furthermore, the long-time scale simulations also present a satisfying performance for the grid energy saving and the load factor. Particularly, the proposed scheme offers high computational efficiency compared with different architecture and algorithm, and the execution time for scheduling one PEV at one-time interval shows a microsecond basis.

Suggested Citation

  • Shang, Yitong & Liu, Man & Shao, Ziyun & Jian, Linni, 2020. "Internet of smart charging points with photovoltaic Integration: A high-efficiency scheme enabling optimal dispatching between electric vehicles and power grids," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311417
    DOI: 10.1016/j.apenergy.2020.115640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yifei & Wang, Xiuli & Shao, Chengcheng & Gong, Naiwei, 2020. "Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach," Renewable Energy, Elsevier, vol. 155(C), pages 513-530.
    2. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    3. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    4. Kavousi-Fard, Abdollah & Abunasri, Alireza & Zare, Alireza & Hoseinzadeh, Rasool, 2014. "Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids," Energy, Elsevier, vol. 78(C), pages 904-915.
    5. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    6. Fathabadi, Hassan, 2020. "Novel stand-alone, completely autonomous and renewable energy based charging station for charging plug-in hybrid electric vehicles (PHEVs)," Applied Energy, Elsevier, vol. 260(C).
    7. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    8. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    9. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    10. Zhang, Tianyang & Pota, Himanshu & Chu, Chi-Cheng & Gadh, Rajit, 2018. "Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency," Applied Energy, Elsevier, vol. 226(C), pages 582-594.
    11. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    12. Zheng, Yanchong & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2018. "A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid," Applied Energy, Elsevier, vol. 217(C), pages 1-13.
    13. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Hang & Shang, Yitong & Niu, Songyan & Cheng, Chong & Shao, Ziyun & Jian, Linni, 2022. "Towards energy-efficient and cost-effective DC nanaogrid: A novel pseudo hierarchical architecture incorporating V2G technology for both autonomous coordination and regulated power dispatching," Applied Energy, Elsevier, vol. 313(C).
    2. Prince Waqas Khan & Yung-Cheol Byun, 2021. "Blockchain-Based Peer-to-Peer Energy Trading and Charging Payment System for Electric Vehicles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    3. Sun, Chuyu & Zhao, Xiaoli & Qi, Binbin & Xiao, Weihao & Zhang, Hongjun, 2022. "Economic and environmental analysis of coupled PV-energy storage-charging station considering location and scale," Applied Energy, Elsevier, vol. 328(C).
    4. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    5. Lei, Xiang & Yu, Hang & Shao, Ziyun & Jian, Linni, 2023. "Optimal bidding and coordinating strategy for maximal marginal revenue due to V2G operation: Distribution system operator as a key player in China's uncertain electricity markets," Energy, Elsevier, vol. 283(C).
    6. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    7. Syed Taha Taqvi & Ali Almansoori & Azadeh Maroufmashat & Ali Elkamel, 2022. "Utilizing Rooftop Renewable Energy Potential for Electric Vehicle Charging Infrastructure Using Multi-Energy Hub Approach," Energies, MDPI, vol. 15(24), pages 1-21, December.
    8. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Shang, Yitong & Yu, Hang & Niu, Songyan & Shao, Ziyun & Jian, Linni, 2021. "Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for vehicle-to-grid operation," Applied Energy, Elsevier, vol. 303(C).
    10. Wei Dai & Yang Gao & Hui Hwang Goh & Jiangyi Jian & Zhihong Zeng & Yuelin Liu, 2024. "A Non-Iterative Coordinated Scheduling Method for a AC-DC Hybrid Distribution Network Based on a Projection of the Feasible Region of Tie Line Transmission Power," Energies, MDPI, vol. 17(6), pages 1-20, March.
    11. Akansha Jain & Masoud Karimi-Ghartemani, 2022. "Mitigating Adverse Impacts of Increased Electric Vehicle Charging on Distribution Transformers," Energies, MDPI, vol. 15(23), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    2. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    3. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    4. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    5. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    6. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    7. Shang, Yitong & Yu, Hang & Niu, Songyan & Shao, Ziyun & Jian, Linni, 2021. "Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for vehicle-to-grid operation," Applied Energy, Elsevier, vol. 303(C).
    8. Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
    9. Wu, Di & Radhakrishnan, Nikitha & Huang, Sen, 2019. "A hierarchical charging control of plug-in electric vehicles with simple flexibility model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).
    11. Charilaos Latinopoulos & Aruna Sivakumar & John W. Polak, 2021. "Optimal Pricing of Vehicle-to-Grid Services Using Disaggregate Demand Models," Energies, MDPI, vol. 14(4), pages 1-27, February.
    12. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).
    13. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    14. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    15. Yan, Jie & Menghwar, Mohan & Asghar, Ehtisham & Kumar Panjwani, Manoj & Liu, Yongqian, 2019. "Real-time energy management for a smart-community microgrid with battery swapping and renewables," Applied Energy, Elsevier, vol. 238(C), pages 180-194.
    16. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    17. Ruifeng Shi & Jie Zhang & Hao Su & Zihang Liang & Kwang Y. Lee, 2020. "An Economic Penalty Scheme for Optimal Parking Lot Utilization with EV Charging Requirements," Energies, MDPI, vol. 13(22), pages 1-21, November.
    18. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    19. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).
    20. Zhang, Wenjie & Gandhi, Oktoviano & Quan, Hao & Rodríguez-Gallegos, Carlos D. & Srinivasan, Dipti, 2018. "A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and electric vehicle coordination," Applied Energy, Elsevier, vol. 229(C), pages 96-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.