IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v179y2023ics1364032123001302.html
   My bibliography  Save this article

Land use and land cover dynamics: Implications for thermal stress and energy demands

Author

Listed:
  • Adeyeri, Oluwafemi E.
  • Zhou, Wen
  • Laux, Patrick
  • Wang, Xuan
  • Dieng, Diarra
  • Widana, Lakshani A.E.
  • Usman, Muhammad

Abstract

This study examined the interaction between land use and land cover (LULC) dynamics, trend and thermal stress distribution using the universal thermal comfort index (UTCI) and different LULC classifications under two Coupled Model Intercomparison Project Phase 6 (CMIP6) Shared Socioeconomic Pathways (i.e., SSP 370 and 585) climate and land use scenarios for the historical (1959–2014) and future period (2045–2100). The moderate to strong cold stress in the annual and winter climatology in the midlatitudes was replaced by no thermal stress in the summer, while the summertime ranged from moderate to strong heat stress. A negative correlation was observed between thermal stress and southern hemispheric primary forests. Perennial croplands had the most dynamic changes in intensity during the historical period. Primary and secondary forests had an active influence on global thermal stress. Areas in the tropics recording moderate heat stress coincided with secondary nonforest, pastureland, and annual cropland expansions. The conversion of forest to range land and croplands and the subsequent negative forest trends increased the severity of thermal stress. The future projection showed intense thermal stress; however, the SSP-585 signals were more potent. As a result, cooling demands will rise, and heating demands will decline, yet, improved thermal comfort necessitates a higher cooling capacity, especially in the summer. Thermal stress may make it difficult for many cooling systems to meet people's energy demands. These could be a driving factor in shaping better land use policies, improving energy demand preparedness, and elucidating the potentially severe impacts of thermal stress.

Suggested Citation

  • Adeyeri, Oluwafemi E. & Zhou, Wen & Laux, Patrick & Wang, Xuan & Dieng, Diarra & Widana, Lakshani A.E. & Usman, Muhammad, 2023. "Land use and land cover dynamics: Implications for thermal stress and energy demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:rensus:v:179:y:2023:i:c:s1364032123001302
    DOI: 10.1016/j.rser.2023.113274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123001302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom H. Oliver & Mike D. Morecroft, 2014. "Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(3), pages 317-335, May.
    2. Duveiller, Gregory & Caporaso, Luca & Abad-Viñas, Raul & Perugini, Lucia & Grassi, Giacomo & Arneth, Almut & Cescatti, Alessandro, 2020. "Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers," Land Use Policy, Elsevier, vol. 91(C).
    3. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    4. S. E. Perkins-Kirkpatrick & S. C. Lewis, 2020. "Increasing trends in regional heatwaves," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Birthal, Pratap S. & Hazrana, Jaweriah & Negi, Digvijay S. & Pandey, Ghanshyam, 2021. "Benefits of irrigation against heat stress in agriculture: Evidence from wheat crop in India," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Helen & Alexandros Gasparatos, 2020. "Ecosystem Services Provision from Urban Farms in a Secondary City of Myanmar, Pyin Oo Lwin," Agriculture, MDPI, vol. 10(5), pages 1-17, April.
    7. Camilo Mora & Bénédicte Dousset & Iain R. Caldwell & Farrah E. Powell & Rollan C. Geronimo & Coral R. Bielecki & Chelsie W. W. Counsell & Bonnie S. Dietrich & Emily T. Johnston & Leo V. Louis & Matthe, 2017. "Global risk of deadly heat," Nature Climate Change, Nature, vol. 7(7), pages 501-506, July.
    8. Gregory Duveiller & Josh Hooker & Alessandro Cescatti, 2018. "The mark of vegetation change on Earth’s surface energy balance," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajdu, Tamás, 2024. "Temperature exposure and sleep duration: Evidence from time use surveys," Economics & Human Biology, Elsevier, vol. 54(C).
    2. Vittal Hari & Subimal Ghosh & Wei Zhang & Rohini Kumar, 2022. "Strong influence of north Pacific Ocean variability on Indian summer heatwaves," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    5. Arellano-Gonzalez, Jesus & Juarez-Torres, Miriam & Zazueta-Borboa, Francisco, 2021. "Temperature shocks and local price changes of agricultural products: panel data evidence from Mexico," 2021 Annual Meeting, August 1-3, Austin, Texas 314060, Agricultural and Applied Economics Association.
    6. Zoé A Hamstead, 2024. "Thermal insecurity: Violence of heat and cold in the urban climate refuge," Urban Studies, Urban Studies Journal Limited, vol. 61(3), pages 531-548, February.
    7. Yu. V. Zinchenko & N. E. Terent’ev, 2022. "Risks of Climate Change to Health and Adaptation of the Population: A Review of World Experience and Lessons for Russia," Studies on Russian Economic Development, Springer, vol. 33(6), pages 671-679, December.
    8. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. J Bradley Layton & Wenhong Li & Jiacan Yuan & Joshua P Gilman & Daniel B Horton & Soko Setoguchi, 2020. "Heatwaves, medications, and heat-related hospitalization in older Medicare beneficiaries with chronic conditions," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-15, December.
    10. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Juliana Freitas Santos & Udo Schickhoff & Shabeh ul Hasson & Jürgen Böhner, 2023. "Biogeophysical Effects of Land-Use and Land-Cover Changes in South Asia: An Analysis of CMIP6 Models," Land, MDPI, vol. 12(4), pages 1-25, April.
    12. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    13. Zander, Kerstin K. & Mathew, Supriya, 2019. "Estimating economic losses from perceived heat stress in urban Malaysia," Ecological Economics, Elsevier, vol. 159(C), pages 84-90.
    14. Haqiqi, Iman & Buzan, Jonathan & Zanetti De Lima, Cicero & Hertel, Thomas, 2020. "Margins of Adaptation to Human Heat Stress: Local, National, and Global Socioeconomic Responses," Conference papers 333237, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    16. Yuxiang Li & Jens-Christian Svenning & Weiqi Zhou & Kai Zhu & Jesse F. Abrams & Timothy M. Lenton & William J. Ripple & Zhaowu Yu & Shuqing N. Teng & Robert R. Dunn & Chi Xu, 2024. "Green spaces provide substantial but unequal urban cooling globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Zhanjie Zhang & Yong Wang & Guang J. Zhang & Cheng Xing & Wenwen Xia & Mengmiao Yang, 2024. "Light rain exacerbates extreme humid heat," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Alessio Patriarca & Eros Caputi & Lorenzo Gatti & Ernesto Marcheggiani & Fabio Recanatesi & Carlo Maria Rossi & Maria Nicolina Ripa, 2024. "Wide-Scale Identification of Small Woody Features of Landscape from Remote Sensing," Land, MDPI, vol. 13(8), pages 1-20, July.
    19. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    20. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:179:y:2023:i:c:s1364032123001302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.