IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223005832.html
   My bibliography  Save this article

Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China

Author

Listed:
  • Meng, Fanchao
  • Zhang, Lei
  • Ren, Guoyu
  • Zhang, Ruixue

Abstract

The frequent occurrence of extremely high temperatures and heatwaves (HWs), combined with the urban heat island (UHI) effect, significantly affects building energy consumption. This study is performed to investigate the impacts of UHI on building cooling demand during HW periods in megacities. Thus, we examine a typical HW event in late June and early July of 2018, which is classified into HW and non-HW periods, in the two megacities of Beijing and Tianjin. Based on hourly meteorological observation data and rural weather stations selected using satellite-based methodology, the impacts of the UHI on the hourly cooling loads of typical residential and office buildings are evaluated by simulating the hourly cooling loads during the HW event. The results show that the hourly maximum urban heat island intensity (UHII) in Beijing and Tianjin reached 8.4 °C and 5.7 °C during the HW period, respectively. The cooling load of the buildings as well as the urban-rural load difference increased significantly when HWs occurred. The urban-rural hourly load difference of the office buildings is greater than that of the residential buildings. During nighttime, the urban-rural hourly load difference of the residential buildings increased, and the peak value occurred between 02:00 LST and 04:00 LST, which is more evident in Beijing than in Tianjin. For every 1 °C increase in the UHII, the hourly cooling load of the residential buildings (office buildings) in the urban areas increased by 0.5 × 10−3 kWh/m2 (1.4 × 10−3 kWh/m2) compared with that in the rural areas. These findings should be considered in the building design and operation regulation of energy saving, particularly the impacts of extreme HWs and UHI on peak loads, to reduce energy consumption and carbon emissions in other megacities located at similar latitudes and with similar conditions as those of Beijing and Tianjin.

Suggested Citation

  • Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223005832
    DOI: 10.1016/j.energy.2023.127189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223005832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zinzi, Michele & Carnielo, Emiliano & Mattoni, Benedetta, 2018. "On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy," Applied Energy, Elsevier, vol. 221(C), pages 148-160.
    2. Li, Xue & Du, Xiaoxue & Jiang, Tao & Zhang, Rufeng & Chen, Houhe, 2022. "Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events," Applied Energy, Elsevier, vol. 309(C).
    3. Xu, Xiaoyu & González, Jorge E. & Shen, Shuanghe & Miao, Shiguang & Dou, Junxia, 2018. "Impacts of urbanization and air pollution on building energy demands — Beijing case study," Applied Energy, Elsevier, vol. 225(C), pages 98-109.
    4. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    5. Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
    6. Morakinyo, Tobi Eniolu & Ren, Chao & Shi, Yuan & Lau, Kevin Ka-Lun & Tong, Hang-Wai & Choy, Chun-Wing & Ng, Edward, 2019. "Estimates of the impact of extreme heat events on cooling energy demand in Hong Kong," Renewable Energy, Elsevier, vol. 142(C), pages 73-84.
    7. Ying Sun & Xuebin Zhang & Francis W. Zwiers & Lianchun Song & Hui Wan & Ting Hu & Hong Yin & Guoyu Ren, 2014. "Rapid increase in the risk of extreme summer heat in Eastern China," Nature Climate Change, Nature, vol. 4(12), pages 1082-1085, December.
    8. Cui, Ying & Yan, Da & Hong, Tianzhen & Ma, Jingjin, 2017. "Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance," Energy, Elsevier, vol. 130(C), pages 286-297.
    9. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    10. Yanjun Wang & Anqian Wang & Jianqing Zhai & Hui Tao & Tong Jiang & Buda Su & Jun Yang & Guojie Wang & Qiyong Liu & Chao Gao & Zbigniew W. Kundzewicz & Mingjin Zhan & Zhiqiang Feng & Thomas Fischer, 2019. "Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2.0 °C warming," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    11. Tremeac, Brice & Bousquet, Pierre & de Munck, Cecile & Pigeon, Gregoire & Masson, Valery & Marchadier, Colette & Merchat, Michele & Poeuf, Pierre & Meunier, Francis, 2012. "Influence of air conditioning management on heat island in Paris air street temperatures," Applied Energy, Elsevier, vol. 95(C), pages 102-110.
    12. Yau, Y.H. & Hasbi, S., 2013. "A review of climate change impacts on commercial buildings and their technical services in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 430-441.
    13. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    14. Zhou, Xiaohai & Carmeliet, Jan & Sulzer, Matthias & Derome, Dominique, 2020. "Energy-efficient mitigation measures for improving indoor thermal comfort during heat waves," Applied Energy, Elsevier, vol. 278(C).
    15. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    16. Mingcai Li & Jun Shi & Jun Guo & Jingfu Cao & Jide Niu & Mingming Xiong, 2015. "Climate Impacts on Extreme Energy Consumption of Different Types of Buildings," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xiaoshan & Yao, Lingye & Peng, Lilliana L.H., 2024. "Impacts of urban air temperature and humidity on building cooling and heating energy demand in 15 cities of eastern China," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    2. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    3. Ulpiani, Giulia & di Perna, Costanzo & Zinzi, Michele, 2019. "Water nebulization to counteract urban overheating: Development and experimental test of a smart logic to maximize energy efficiency and outdoor environmental quality," Applied Energy, Elsevier, vol. 239(C), pages 1091-1113.
    4. Deng, Ji-Yu & Wong, Nyuk Hien & Zheng, Xin, 2021. "Effects of street geometries on building cooling demand in Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    6. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    7. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
    8. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    9. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Yang, Xiaoshan & Yao, Lingye & Peng, Lilliana L.H., 2024. "Impacts of urban air temperature and humidity on building cooling and heating energy demand in 15 cities of eastern China," Energy, Elsevier, vol. 288(C).
    11. Luxi Jin & Sebastian Schubert & Mohamed Hefny Salim & Christoph Schneider, 2020. "Impact of Air Conditioning Systems on the Outdoor Thermal Environment during Summer in Berlin, Germany," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
    12. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    13. Zhou, Xiaohai & Carmeliet, Jan & Sulzer, Matthias & Derome, Dominique, 2020. "Energy-efficient mitigation measures for improving indoor thermal comfort during heat waves," Applied Energy, Elsevier, vol. 278(C).
    14. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    15. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    16. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    17. Jia, Qi & Zhu, Yian & Zhang, Tiantian & Li, Shuling & Han, Dongliang & Feng, Qi & Tan, Yufei & Li, Baochang, 2024. "Urban microclimate differences in continental zone of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    18. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    19. Yaping Chen & Chun Wang & Yinze Hu, 2024. "Energy Consumption and Outdoor Thermal Comfort Characteristics in High-Density Urban Areas Based on Local Climate Zone—A Case Study of Changsha, China," Sustainability, MDPI, vol. 16(16), pages 1-35, August.
    20. Du, Ruiqing & Liu, Chun-Ho & Li, Xian-Xiang & Lin, Chuan-Yao, 2023. "Effect of local climate zone (LCZ) and building category (BC) classification on the simulation of urban climate and air-conditioning load in Hong Kong," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223005832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.