IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v233-234y2019ip254-270.html
   My bibliography  Save this article

The feasibility and importance of considering climate change impacts in building retrofit analysis

Author

Listed:
  • Shen, Pengyuan
  • Braham, William
  • Yi, Yunkyu

Abstract

Current building energy use is projected to increase by 1.7% annually until 2025, and the great potential for energy reduction in existing buildings has created opportunities in building energy retrofit projects. In this research, a framework and method are proposed to evaluate the impacts of different retrofit options to existing building under climate change. A Python retrofit tool is developed to perform parametric study by running EnergyPlus under different retrofit scenarios for existing buildings. With the help of Latin-hypercube sampling (LHS) method and a joint mutual information maximization (JMIM)-based feature selection method, the energy conservation measure (ECM) that may have the most potential in reducing the energy use or the lifecycle net present value (NPV) of a target existing building can be selected. A validated data-driven model is used to predict the building’s future hourly energy use based on EnergyPlus simulation results generated by future extreme year weather data. It is demonstrated that global climate change will alter the optimal solution of future ECM combination and its influence varies from building to building, location to location. The optimal retrofit strategy of selecting the best ECM combinations under current climate condition will be subject to change in the future climate condition.

Suggested Citation

  • Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2019. "The feasibility and importance of considering climate change impacts in building retrofit analysis," Applied Energy, Elsevier, vol. 233, pages 254-270.
  • Handle: RePEc:eee:appene:v:233-234:y:2019:i::p:254-270
    DOI: 10.1016/j.apenergy.2018.10.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918315976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.10.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Pengyuan & Lior, Noam, 2016. "Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-zero energy buildings," Energy, Elsevier, vol. 114(C), pages 1288-1305.
    2. Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Sawaya, Geof & Chen, Yixing & Taylor-Lange, Sarah C., 2015. "Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance," Energy, Elsevier, vol. 90(P1), pages 738-747.
    3. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    4. Chidiac, S.E. & Catania, E.J.C. & Morofsky, E. & Foo, S., 2011. "Effectiveness of single and multiple energy retrofit measures on the energy consumption of office buildings," Energy, Elsevier, vol. 36(8), pages 5037-5052.
    5. Chen, Yixing & Hong, Tianzhen & Piette, Mary Ann, 2017. "Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis," Applied Energy, Elsevier, vol. 205(C), pages 323-335.
    6. Chen, Yixing & Hong, Tianzhen, 2018. "Impacts of building geometry modeling methods on the simulation results of urban building energy models," Applied Energy, Elsevier, vol. 215(C), pages 717-735.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wenbo & Dong, Bing & Wang, Qi (Ryan) & Kong, Meng & Yan, Da & An, Jingjing & Liu, Yapan, 2020. "A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption," Applied Energy, Elsevier, vol. 278(C).
    2. Chen, Yixing & Hong, Tianzhen, 2018. "Impacts of building geometry modeling methods on the simulation results of urban building energy models," Applied Energy, Elsevier, vol. 215(C), pages 717-735.
    3. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    4. Chen, Yixing & Deng, Zhang & Hong, Tianzhen, 2020. "Automatic and rapid calibration of urban building energy models by learning from energy performance database," Applied Energy, Elsevier, vol. 277(C).
    5. Shen, Pengyuan & Wang, Huilong, 2024. "Archetype building energy modeling approaches and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    7. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    8. Hou, Jin & Xu, Peng & Lu, Xing & Pang, Zhihong & Chu, Yiyi & Huang, Gongsheng, 2018. "Implementation of expansion planning in existing district energy system: A case study in China," Applied Energy, Elsevier, vol. 211(C), pages 269-281.
    9. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    10. Zhang Deng & Yixing Chen & Xiao Pan & Zhiwen Peng & Jingjing Yang, 2021. "Integrating GIS-Based Point of Interest and Community Boundary Datasets for Urban Building Energy Modeling," Energies, MDPI, vol. 14(4), pages 1-17, February.
    11. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    12. Hye Gi Kim & Hyun Jun Kim & Chae Hwan Jeon & Myeong Won Chae & Young Hum Cho & Sun Sook Kim, 2020. "Analysis of Energy Saving Effect and Cost Efficiency of ECMs to Upgrade the Building Energy Code," Energies, MDPI, vol. 13(18), pages 1-22, September.
    13. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2022. "Performance-based climatic zoning method for building energy efficiency applications using cluster analysis," Energy, Elsevier, vol. 255(C).
    14. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    15. Hou, Jing & Liu, Yisheng & Wu, Yong & Zhou, Nan & Feng, Wei, 2016. "Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China," Energy Policy, Elsevier, vol. 88(C), pages 204-215.
    16. Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2019. "Energy optimization of high-rise commercial buildings integrated with photovoltaic facades in urban context," Energy, Elsevier, vol. 172(C), pages 1-17.
    17. Lu, Mengxue & Lai, Joseph, 2020. "Review on carbon emissions of commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Zheng, Donglin & Yu, Lijun & Wang, Lizhen, 2019. "A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation," Energy, Elsevier, vol. 189(C).
    19. Valeria Todeschi & Roberto Boghetti & Jérôme H. Kämpf & Guglielmina Mutani, 2021. "Evaluation of Urban-Scale Building Energy-Use Models and Tools—Application for the City of Fribourg, Switzerland," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    20. Fernanda Cruz Rios & Sulaiman Al Sultan & Oswald Chong & Kristen Parrish, 2023. "Empowering Owner-Operators of Small and Medium Commercial Buildings to Identify Energy Retrofit Opportunities," Energies, MDPI, vol. 16(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:233-234:y:2019:i::p:254-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.