IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i3d10.1007_s10957-023-02371-5.html
   My bibliography  Save this article

Exact SDP Reformulations for Adjustable Robust Quadratic Optimization with Affine Decision Rules

Author

Listed:
  • Huan Zhang

    (Chongqing Technology and Business University)

  • Xiangkai Sun

    (Chongqing Technology and Business University)

  • Kok Lay Teo

    (Sunway University)

Abstract

In this paper, we deal with exact semidefinite programming (SDP) reformulations for a class of adjustable robust quadratic optimization problems with affine decision rules. By virtue of a special semidefinite representation of the non-negativity of separable non-convex quadratic functions on box uncertain sets, we establish an exact SDP reformulation for this adjustable robust quadratic optimization problem on spectrahedral uncertain sets. Note that the spectrahedral uncertain set contains commonly used uncertain sets, such as ellipsoids, polytopes, and boxes. As special cases, we also establish exact SDP reformulations for this adjustable robust quadratic optimization problems when the uncertain sets are ellipsoids, polytopes, and boxes, respectively. As applications, we establish the corresponding results for fractionally adjustable robust quadratic optimization problems.

Suggested Citation

  • Huan Zhang & Xiangkai Sun & Kok Lay Teo, 2024. "Exact SDP Reformulations for Adjustable Robust Quadratic Optimization with Affine Decision Rules," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2206-2232, December.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-023-02371-5
    DOI: 10.1007/s10957-023-02371-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02371-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02371-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiawei Chen & Jun Li & Xiaobing Li & Yibing Lv & Jen-Chih Yao, 2020. "Radius of Robust Feasibility of System of Convex Inequalities with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 384-399, February.
    2. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    3. T. D. Chuong & V. Jeyakumar & G. Li & D. Woolnough, 2021. "Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity," Journal of Global Optimization, Springer, vol. 81(4), pages 1095-1117, December.
    4. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    5. Jae Hyoung Lee & Liguo Jiao, 2018. "Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 428-455, February.
    6. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    7. Jiawei Chen & Elisabeth Köbis & Jen-Chih Yao, 2019. "Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 411-436, May.
    8. Xin Chen & Yuhan Zhang, 2009. "Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts," Operations Research, INFORMS, vol. 57(6), pages 1469-1482, December.
    9. Thai Doan Chuong & Vaithilingam Jeyakumar, 2020. "Generalized Farkas Lemma with Adjustable Variables and Two-Stage Robust Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 488-519, November.
    10. Yang, Yaguang, 2011. "A polynomial arc-search interior-point algorithm for convex quadratic programming," European Journal of Operational Research, Elsevier, vol. 215(1), pages 25-38, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thai Doan Chuong & Xinghuo Yu & Chen Liu & Andrew Eberhard & Chaojie Li, 2024. "Solving Two-stage Quadratic Multiobjective Problems via Optimality and Relaxations," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 676-713, October.
    2. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    3. Xiangkai Sun & Kok Lay Teo & Xian-Jun Long, 2021. "Some Characterizations of Approximate Solutions for Robust Semi-infinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 281-310, October.
    4. Xiangkai Sun & Wen Tan & Kok Lay Teo, 2023. "Characterizing a Class of Robust Vector Polynomial Optimization via Sum of Squares Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 737-764, May.
    5. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    6. Han, Biao & Shang, Chao & Huang, Dexian, 2021. "Multiple kernel learning-aided robust optimization: Learning algorithm, computational tractability, and usage in multi-stage decision-making," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1004-1018.
    7. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    8. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    9. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
    10. Ran, Cuiling & Zhang, Yanzi & Yin, Ying, 2021. "Demand response to improve the shared electric vehicle planning: Managerial insights, sustainable benefits," Applied Energy, Elsevier, vol. 292(C).
    11. Jiawei Chen & Suliman Al-Homidan & Qamrul Hasan Ansari & Jun Li & Yibing Lv, 2021. "Robust Necessary Optimality Conditions for Nondifferentiable Complex Fractional Programming with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 221-243, April.
    12. Jiawei Chen & Jun Li & Xiaobing Li & Yibing Lv & Jen-Chih Yao, 2020. "Radius of Robust Feasibility of System of Convex Inequalities with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 384-399, February.
    13. Thai Doan Chuong & Vaithilingam Jeyakumar, 2020. "Generalized Farkas Lemma with Adjustable Variables and Two-Stage Robust Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 488-519, November.
    14. Ning Zhang & Chang Fang, 2020. "Saddle point approximation approaches for two-stage robust optimization problems," Journal of Global Optimization, Springer, vol. 78(4), pages 651-670, December.
    15. T. D. Chuong & V. Jeyakumar & G. Li & D. Woolnough, 2021. "Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity," Journal of Global Optimization, Springer, vol. 81(4), pages 1095-1117, December.
    16. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    17. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    18. Jie Wang & Shengjie Li & Min Feng, 2022. "Unified Robust Necessary Optimality Conditions for Nonconvex Nonsmooth Uncertain Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 226-248, October.
    19. Rahal, Said & Papageorgiou, Dimitri J. & Li, Zukui, 2021. "Hybrid strategies using linear and piecewise-linear decision rules for multistage adaptive linear optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1014-1030.
    20. Shin, Youngchul & Lee, Sangyoon & Moon, Ilkyeong, 2021. "Robust multiperiod inventory model with a new type of buy one get one promotion: “My Own Refrigerator”," Omega, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-023-02371-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.