IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018042.html
   My bibliography  Save this article

Energy management for regional microgrids considering energy transmission of electric vehicles between microgrids

Author

Listed:
  • Jiao, Feixiang
  • Zou, Yuan
  • Zhou, Yi
  • Zhang, Yanyu
  • Zhang, Xibeng

Abstract

As the proliferation of electric vehicles (EVs) continues to accelerate, the inherent attributes of EVs warrant meticulous consideration in the realm of energy dispatch. In order to evaluate the ability of EVs as mobile energy storage, this paper presents an energy management framework for the microgrids' online dispatch, which accounts for the spatio-temporal energy transmission of EVs between microgrids. The energy management framework contains two iterative processes: optimizing charging price and guiding charging dispatch. To sufficiently capture the uncertainties of the renewable energy and load demand, chance-constrained optimization is utilized to determine the charging price by reasonable power allocation. To achieve a continuous and efficient control policy, a normalized advantage function-deep Q learning network (NAF-DQN) is developed for EV dispatch under V2G technology. The above two processes as a coupled optimization problem are solved alternately until convergence. Numerical cases considering energy transmission of EVs between microgrids are studied to demonstrate the superiority of the proposed dispatch framework. The simulation results indicate improved computational efficiency and higher-quality solution.

Suggested Citation

  • Jiao, Feixiang & Zou, Yuan & Zhou, Yi & Zhang, Yanyu & Zhang, Xibeng, 2023. "Energy management for regional microgrids considering energy transmission of electric vehicles between microgrids," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018042
    DOI: 10.1016/j.energy.2023.128410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Ying-Yi & Lin, Jie-Kai, 2013. "Interactive multi-objective active power scheduling considering uncertain renewable energies using adaptive chaos clonal evolutionary programming," Energy, Elsevier, vol. 53(C), pages 212-220.
    2. Dorokhova, Marina & Martinson, Yann & Ballif, Christophe & Wyrsch, Nicolas, 2021. "Deep reinforcement learning control of electric vehicle charging in the presence of photovoltaic generation," Applied Energy, Elsevier, vol. 301(C).
    3. Nemirovski, Arkadi, 2012. "On safe tractable approximations of chance constraints," European Journal of Operational Research, Elsevier, vol. 219(3), pages 707-718.
    4. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    5. Fang, Xinli & Yang, Qiang & Dong, Wei, 2018. "Fuzzy decision based energy dispatch in offshore industrial microgrid with desalination process and multi-type DGs," Energy, Elsevier, vol. 148(C), pages 744-755.
    6. Peng, Chao & Zou, Jianxiao & Lian, Lian & Li, Liying, 2017. "An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits," Applied Energy, Elsevier, vol. 190(C), pages 591-599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yifeng & Jiang, Aihua & Wang, Rui & Tian, Junyang, 2024. "A canonical coalitional game model incorporating motivational psychology analysis for incentivizing stable direct energy trading in smart grid," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    2. Saif Jamal & Jagadeesh Pasupuleti & Nur Azzammudin Rahmat & Nadia M. L. Tan, 2022. "Energy Management System for Grid-Connected Nanogrid during COVID-19," Energies, MDPI, vol. 15(20), pages 1-20, October.
    3. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    4. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    5. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    6. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    8. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    9. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    10. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    11. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    12. Ali Dargahi & Khezr Sanjani & Morteza Nazari-Heris & Behnam Mohammadi-Ivatloo & Sajjad Tohidi & Mousa Marzband, 2020. "Scheduling of Air Conditioning and Thermal Energy Storage Systems Considering Demand Response Programs," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    13. Bhabasis Mohapatra & Binod Kumar Sahu & Swagat Pati & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak & Mosleh Alharthi, 2022. "Real-Time Validation of a Novel IAOA Technique-Based Offset Hysteresis Band Current Controller for Grid-Tied Photovoltaic System," Energies, MDPI, vol. 15(23), pages 1-26, November.
    14. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    15. Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
    16. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    17. Liu, Hui & Huang, Kai & Wang, Ni & Qi, Junjian & Wu, Qiuwei & Ma, Shicong & Li, Canbing, 2019. "Optimal dispatch for participation of electric vehicles in frequency regulation based on area control error and area regulation requirement," Applied Energy, Elsevier, vol. 240(C), pages 46-55.
    18. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    19. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    20. Sheeraz Iqbal & Salman Habib & Muhammad Ali & Aqib Shafiq & Anis ur Rehman & Emad M. Ahmed & Tahir Khurshaid & Salah Kamel, 2022. "The Impact of V2G Charging/Discharging Strategy on the Microgrid Environment Considering Stochastic Methods," Sustainability, MDPI, vol. 14(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.