IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4443-d1160486.html
   My bibliography  Save this article

Integrated Demand Response Programs in Energy Hubs: A Review of Applications, Classifications, Models and Future Directions

Author

Listed:
  • Innocent Kamwa

    (Department of Electrical Engineering, Laval University, Quebec, QC G1V 0A6, Canada)

  • Leila Bagherzadeh

    (Department of Electrical Engineering, Laval University, Quebec, QC G1V 0A6, Canada)

  • Atieh Delavari

    (Hydro-Quebec Institute of Research (IREQ), Varennes, QC J3X 1S1, Canada)

Abstract

In the traditional power system, customers respond to their primary electricity consumption pattern based on price or incentive to take additional advantages. By developing energy hubs (EHs) where electricity, heat, natural gas and other forms of energy are coupled together, all types of energy customers, even the inelastic loads, can participate in the demand response (DR) program. This novel vision has led to the concept of “integrated demand response (IDR)”. IDR programs (IDRPs) in EHs involve coordinating multiple DR activities across different energy systems, such as buildings, industrial complexes and transportation networks. The main purpose of IDR is so that multi-energy users can respond not only by shifting or reducing their energy consumption from the demand side, but also by changing the type of energy consumed in response to the dispatching center. The integration of IDRPs in EHs can help to reduce energy costs, improve grid stability and increase the penetration of renewable energy sources (RES) in the power system. Moreover, by synchronizing DR activities across different energy systems, IDRPs can provide additional benefits, such as improved energy efficiency, reduced greenhouse gas emissions and increased resilience to power outages and other disruptions. In this paper, we provide an overview of the IDRP across EH areas, encompassing different aspects of it. First, the nature behind IDRP and its basic concept is introduced. Then, a categorization of fundamental principles within the IDRP is undertaken. Furthermore, modelling formulation and optimization techniques of IDRP in EHs are conducted. In addition to the IDRP content and model, this article deals with the research performed in this field from different perspectives. Finally, the advantages and prospect challenges of IDRPs are discussed.

Suggested Citation

  • Innocent Kamwa & Leila Bagherzadeh & Atieh Delavari, 2023. "Integrated Demand Response Programs in Energy Hubs: A Review of Applications, Classifications, Models and Future Directions," Energies, MDPI, vol. 16(11), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4443-:d:1160486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    2. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    3. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    4. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    5. Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
    6. Herter, Karen & Wayland, Seth, 2010. "Residential response to critical-peak pricing of electricity: California evidence," Energy, Elsevier, vol. 35(4), pages 1561-1567.
    7. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    8. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    9. Pan, Guangsheng & Gu, Wei & Wu, Zhi & Lu, Yuping & Lu, Shuai, 2019. "Optimal design and operation of multi-energy system with load aggregator considering nodal energy prices," Applied Energy, Elsevier, vol. 239(C), pages 280-295.
    10. Jadidbonab, Mohammad & Babaei, Ebrahim & Mohammadi-ivatloo, Behnam, 2019. "CVaR-constrained scheduling strategy for smart multi carrier energy hub considering demand response and compressed air energy storage," Energy, Elsevier, vol. 174(C), pages 1238-1250.
    11. Zhang, Honghui & Chen, Yuanyuan & Liu, Kuili & Dehan, Sim, 2022. "A novel power system scheduling based on hydrogen-based micro energy hub," Energy, Elsevier, vol. 251(C).
    12. Mazidi, Mohammadreza & Monsef, Hassan & Siano, Pierluigi, 2016. "Robust day-ahead scheduling of smart distribution networks considering demand response programs," Applied Energy, Elsevier, vol. 178(C), pages 929-942.
    13. Salehi, Javad & Namvar, Amin & Gazijahani, Farhad Samadi & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Effect of power-to-gas technology in energy hub optimal operation and gas network congestion reduction," Energy, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leila Bagherzadeh & Innocent Kamwa, 2023. "Joint Multi-Objective Allocation of Parking Lots and DERs in Active Distribution Network Considering Demand Response Programs," Energies, MDPI, vol. 16(23), pages 1-37, November.
    2. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Masahiro Furukakoi & Paras Mandal & Tomonobu Senjyu, 2023. "Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and Uncertainty," Energies, MDPI, vol. 16(19), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    3. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Morteza Vahid-Ghavidel & Mohammad Sadegh Javadi & Matthew Gough & Sérgio F. Santos & Miadreza Shafie-khah & João P.S. Catalão, 2020. "Demand Response Programs in Multi-Energy Systems: A Review," Energies, MDPI, vol. 13(17), pages 1-17, August.
    5. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    6. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    7. Huang, Mengdi & Chang, Jianxia & Guo, Aijun & Zhao, Mingzhe & Ye, Xiangmin & Lei, Kaixuan & Peng, Zhiwen & Wang, Yimin, 2023. "Cascade hydropower stations optimal dispatch considering flexible margin in renewable energy power system," Energy, Elsevier, vol. 285(C).
    8. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    9. Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
    10. Ghayour, Sepideh Saravani & Barforoushi, Taghi, 2022. "Optimal scheduling of electrical and thermal resources and appliances in a smart home under uncertainty," Energy, Elsevier, vol. 261(PA).
    11. Gu, Haifei & Li, Yang & Yu, Jie & Wu, Chen & Song, Tianli & Xu, Jinzhou, 2020. "Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives," Applied Energy, Elsevier, vol. 262(C).
    12. Naghikhani, Ali & Hosseini, Seyed Mohammad Hassan, 2022. "Optimal thermal and power planning considering economic and environmental issues in peak load management," Energy, Elsevier, vol. 239(PA).
    13. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    14. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    15. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    16. Ding, Jianyong & Gao, Ciwei & Song, Meng & Yan, Xingyu & Chen, Tao, 2022. "Bi-level optimal scheduling of virtual energy station based on equal exergy replacement mechanism," Applied Energy, Elsevier, vol. 327(C).
    17. Pedro Faria & João Spínola & Zita Vale, 2018. "Distributed Energy Resources Scheduling and Aggregation in the Context of Demand Response Programs," Energies, MDPI, vol. 11(8), pages 1-17, July.
    18. Ran, Cuiling & Zhang, Yanzi & Yin, Ying, 2021. "Demand response to improve the shared electric vehicle planning: Managerial insights, sustainable benefits," Applied Energy, Elsevier, vol. 292(C).
    19. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    20. Guo, Peiyang & Li, Victor O.K. & Lam, Jacqueline C.K., 2017. "Smart demand response in China: Challenges and drivers," Energy Policy, Elsevier, vol. 107(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4443-:d:1160486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.