IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v43y1995i5p807-825.html
   My bibliography  Save this article

Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis

Author

Listed:
  • James E. Smith

    (Duke University, Durham, North Carolina)

Abstract

In many decision analysis problems, we have only limited information about the relevant probability distributions. In problems like these, it is natural to ask what conclusions can be drawn on the basis of this limited information. For example, in the early stages of analysis of a complex problem, we may have only limited fractile information for the distributions in the problem; what can we say about the optimal strategy or certainty equivalents given these few fractiles? This paper describes a very general framework for analyzing these kinds of problems where, given certain “moments” of a distribution, we can compute bounds on the expected value of an arbitrary “objective” function. By suitable choice of moment and objective functions we can formulate and solve many practical decision analysis problems. We describe the general framework and theoretical results, discuss computational strategies, and provide specific results for examples in dynamic programming, decision analysis with incomplete information, Bayesian statistics, and option pricing.

Suggested Citation

  • James E. Smith, 1995. "Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis," Operations Research, INFORMS, vol. 43(5), pages 807-825, October.
  • Handle: RePEc:inm:oropre:v:43:y:1995:i:5:p:807-825
    DOI: 10.1287/opre.43.5.807
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.43.5.807
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.43.5.807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    2. Nikolaus Schweizer & Nora Szech, 2018. "Optimal Revelation of Life-Changing Information," Management Science, INFORMS, vol. 64(11), pages 5250-5262, November.
    3. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    4. J. A. Primbs, 2010. "SDP Relaxation of Arbitrage Pricing Bounds Based on Option Prices and Moments," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 137-155, January.
    5. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    6. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    7. Yan Chen & Ward Whitt, 2022. "Applying optimization theory to study extremal GI/GI/1 transient mean waiting times," Queueing Systems: Theory and Applications, Springer, vol. 101(3), pages 197-220, August.
    8. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    9. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    10. Ran, Cuiling & Zhang, Yanzi & Yin, Ying, 2021. "Demand response to improve the shared electric vehicle planning: Managerial insights, sustainable benefits," Applied Energy, Elsevier, vol. 292(C).
    11. Dimitris Bertsimas & Ioana Popescu, 2002. "On the Relation Between Option and Stock Prices: A Convex Optimization Approach," Operations Research, INFORMS, vol. 50(2), pages 358-374, April.
    12. Carrasco, Vinicius & Farinha Luz, Vitor & Kos, Nenad & Messner, Matthias & Monteiro, Paulo & Moreira, Humberto, 2018. "Optimal selling mechanisms under moment conditions," Journal of Economic Theory, Elsevier, vol. 177(C), pages 245-279.
    13. Li, Zhaolin, 2021. "Robust Moral Hazard with Distributional Ambiguity," Working Papers BAWP-2021-01, University of Sydney Business School, Discipline of Business Analytics.
    14. J. Eric Bickel & James E. Smith, 2006. "Optimal Sequential Exploration: A Binary Learning Model," Decision Analysis, INFORMS, vol. 3(1), pages 16-32, March.
    15. Bernhard Kasberger, 2022. "An Equilibrium Model of the First-Price Auction with Strategic Uncertainty: Theory and Empirics," Papers 2202.07517, arXiv.org, revised Mar 2022.
    16. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    17. Villegas, Andrés M. & Medaglia, Andrés L. & Zuluaga, Luis F., 2012. "Computing bounds on the expected payoff of Alternative Risk Transfer products," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 271-281.
    18. John D. Rice & Brent A. Johnson & Robert L. Strawderman, 2022. "Screening for chronic diseases: optimizing lead time through balancing prescribed frequency and individual adherence," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 605-636, October.
    19. Derek Singh & Shuzhong Zhang, 2020. "Tight Bounds for a Class of Data-Driven Distributionally Robust Risk Measures," Papers 2010.05398, arXiv.org, revised Oct 2020.
    20. Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
    21. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    22. Ioana Popescu, 2007. "Robust Mean-Covariance Solutions for Stochastic Optimization," Operations Research, INFORMS, vol. 55(1), pages 98-112, February.
    23. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.
    24. Zhaolin Li & Samuel N. Kirshner, 2021. "Salesforce Compensation and Two‐Sided Ambiguity: Robust Moral Hazard with Moment Information," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 2944-2961, September.
    25. Pandit, Charuhas & Meyn, Sean, 2006. "Worst-case large-deviation asymptotics with application to queueing and information theory," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 724-756, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:43:y:1995:i:5:p:807-825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.