IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124018524.html
   My bibliography  Save this article

Dual-objective optimization of solar driven alkaline electrolyzer system for on-site hydrogen production and storage: Current and future scenarios

Author

Listed:
  • Tebibel, H.

Abstract

Achieving cost competitiveness of renewable hydrogen could accelerate the transition to the deeply decarbonized energy system. In this article, we develop and apply a dual-objective optimization model to explore the photovoltaic (PV) hydrogen production pathway and costs development from the present through 2050. The model is applied for optimal capacity allocation of the megawatt-scale off-grid PV-Hydrogen system to achieve maximum production at the minimal levelized cost of hydrogen (LCOH). Methodology includes a smoothing control strategy. Simulation is performed utilizing measured meteorological data for one year with hourly resolution and considering electrolyzer's load flexibility constraint. It has been found that the smoothing control strategy is indispensable for maximizing PV energy utilization, enhancing the electrolyzer's capacity factor and reducing the power curtailments. The analysis shows that the off-grid solar hydrogen in Algeria lacks economic competitiveness currently. Components CAPEX reduction turns out to be the fundamental condition towards the future LCOH decrease. LCOH could decline from 4.2 $/kg in 2025 to 2.24 $/kg in 2050 under central assumptions and to roughly 1.4 $/kg under optimistic assumptions. Alkaline electrolysis step cost could reduce by 0.28 $/kg every decade. Hydrogen storage autonomy could rise the LCOH by 7.1 c$ per day of autonomy in 2050.

Suggested Citation

  • Tebibel, H., 2024. "Dual-objective optimization of solar driven alkaline electrolyzer system for on-site hydrogen production and storage: Current and future scenarios," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018524
    DOI: 10.1016/j.renene.2024.121784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018524
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    2. Sen, Souvik & Ganguly, Sourav, 2017. "Opportunities, barriers and issues with renewable energy development – A discussion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1170-1181.
    3. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    4. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    5. Makhloufi, Saida & Khennas, Smail & Bouchaib, Sami & Arab, Amar Hadj, 2022. "Multi-objective cuckoo search algorithm for optimized pathways for 75 % renewable electricity mix by 2050 in Algeria," Renewable Energy, Elsevier, vol. 185(C), pages 1410-1424.
    6. Zhou, Zhou & Cai, Guotian & Huang, Yuping & Bai, Ruxue & Nie, Shuai & Chen, Xiaoyu, 2024. "Spatial and temporal evolution of cost-competitive offshore hydrogen in China: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    7. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    8. Li, Yangyang & Deng, Xintao & Zhang, Tao & Liu, Shenghui & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao & Shen, Xiaojun, 2023. "Exploration of the configuration and operation rule of the multi-electrolyzers hybrid system of large-scale alkaline water hydrogen production system," Applied Energy, Elsevier, vol. 331(C).
    9. Davis, Matthew & Ahiduzzaman, Md. & Kumar, Amit, 2018. "How will Canada’s greenhouse gas emissions change by 2050? A disaggregated analysis of past and future greenhouse gas emissions using bottom-up energy modelling and Sankey diagrams," Applied Energy, Elsevier, vol. 220(C), pages 754-786.
    10. Qiu, Yiwei & Zhou, Yi & Chen, Shi & Zang, Tianlei & Zhou, Buxiang, 2024. "Flexibility assessment and aggregation of alkaline electrolyzers considering dynamic process constraints for energy management of renewable power-to-hydrogen systems," Renewable Energy, Elsevier, vol. 235(C).
    11. Zurita, Adriana & Mata-Torres, Carlos & Cardemil, José M. & Guédez, Rafael & Escobar, Rodrigo A., 2021. "Multi-objective optimal design of solar power plants with storage systems according to dispatch strategy," Energy, Elsevier, vol. 237(C).
    12. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    13. Campion, Nicolas & Gutiérrez-Alvarez, Raúl & Bruce, José Tomás Figueroa & Münster, Marie, 2024. "The potential role of concentrated solar power for off-grid green hydrogen and ammonia production," Renewable Energy, Elsevier, vol. 236(C).
    14. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    15. Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
    16. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    17. Al-Sharafi, Abdullah & Sahin, Ahmet Z. & Ayar, Tahir & Yilbas, Bekir S., 2017. "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 33-49.
    18. Xiang Huang & Yapan Qu & Zhentao Zhu & Qiuchi Wu, 2023. "Techno-Economic Analysis of Photovoltaic Hydrogen Production Considering Technological Progress Uncertainty," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
    19. Janssen, Jacob L.L.C.C. & Weeda, Marcel & Detz, Remko J. & van der Zwaan, Bob, 2022. "Country-specific cost projections for renewable hydrogen production through off-grid electricity systems," Applied Energy, Elsevier, vol. 309(C).
    20. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1, September.
    21. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2008. "Battery behavior prediction and battery working states analysis of a hybrid solar–wind power generation system," Renewable Energy, Elsevier, vol. 33(6), pages 1413-1423.
    22. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    23. Lowe, R.J. & Drummond, P., 2022. "Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    2. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    4. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    5. Wang, Xiongzheng & Meng, Xin & Nie, Gongzhe & Li, Binghui & Yang, Haoran & He, Mingzhi, 2024. "Optimization of hydrogen production in multi-Electrolyzer systems: A novel control strategy for enhanced renewable energy utilization and Electrolyzer lifespan," Applied Energy, Elsevier, vol. 376(PB).
    6. Colelli, Leonardo & Verdone, Nicola & Bassano, Claudia & Segneri, Valentina & Vilardi, Giorgio, 2024. "Optimization of Power to Gas system with cooled reactor for CO2 methanation: Start-up and shut-down tests with Ru-based and Ni-based kinetics," Energy, Elsevier, vol. 312(C).
    7. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    10. Bongartz, Dominik & Doré, Larissa & Eichler, Katharina & Grube, Thomas & Heuser, Benedikt & Hombach, Laura E. & Robinius, Martin & Pischinger, Stefan & Stolten, Detlef & Walther, Grit & Mitsos, Alexan, 2018. "Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide," Applied Energy, Elsevier, vol. 231(C), pages 757-767.
    11. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    12. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    13. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    14. Fózer, Dániel & Volanti, Mirco & Passarini, Fabrizio & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Mizsey, Péter, 2020. "Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification," Applied Energy, Elsevier, vol. 280(C).
    15. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    16. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    17. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    18. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    19. dos Reis, Rui A. & Rangel, Gustavo P. & Neto, Belmira, 2024. "Social life cycle assessment of green hydrogen production: Evaluating a projected Portuguese industrial production plant," Renewable Energy, Elsevier, vol. 235(C).
    20. Cantú, Victor H. & Ponsich, Antonin & Azzaro-Pantel, Catherine & Carrera, Eduardo, 2023. "Capturing spatial, time-wise and technological detail in hydrogen supply chains: A bi-level multi-objective optimization approach," Applied Energy, Elsevier, vol. 344(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.