Author
Listed:
- Yihan Zhang
(Department of Architecture, Swiss Federal Institute of Technology Zurich (ETH Zurich), Rämistrasse 101, 8092 Zürich, Switzerland
Solar Energy Research Institute of Singapore, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore)
- Tianyi Chen
(Solar Energy Research Institute of Singapore, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore)
- Eugenia Gasparri
(School of Architecture, Design and Planning, University of Sydney, Camperdown, NSW 2050, Australia)
- Elena Lucchi
(Department of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
Department of Architecture, Construction Engineering and Built Environment (ABC), Politecnico di Milano, Via Bonardi 12, 20133 Milan, Italy)
Abstract
As cities confront multiple challenges such as climate change, urbanization, and food security, growing attention has been given to sustainable vertical farming and renewable energy solutions. Building facades, typically underutilized in high-density urban environments, present an opportunity for multifunctional buildings composed of both photovoltaic (PV) systems and vertical farming modules. However, on vertical surfaces, these two systems often compete for space. This research focuses on the development of a multifunctional agrivoltaics building envelope (ABE) system, combining building-integrated PV (BIPV) technology with hydroponic vertical farming. This ABE system adopts a modular design approach, where each unit can be prefabricated independently and assembled through an interlocking connection design and bolted fastening to ensure ease of construction and scalability. The design process includes the development of 2D cross-sectional technical design, assembly sequences, and an analysis of key design parameters through 3D modeling. The research adopts a combined Research through Design (RtD) and Research for Design (RfD) approach to bridge prototyping, testing, and performance optimization. This research highlights the potential of integrating renewable energy with agricultural production in building envelope systems. By addressing space optimization and multifunctionality, the research provides a practical framework for future applications in urban sustainability.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:666-:d:1568380. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.