IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v337y2023ics0306261923001630.html
   My bibliography  Save this article

Technological advancements and research prospects of innovative concentrating agrivoltaics

Author

Listed:
  • Gorjian, Shiva
  • Jalili Jamshidian, Farid
  • Gorjian, Alireza
  • Faridi, Hamideh
  • Vafaei, Mohammad
  • Zhang, Fangxin
  • Liu, Wen
  • Elia Campana, Pietro

Abstract

Agrivoltaic is a strategic and innovative approach that combines photovoltaic (PV) energy conversion with agricultural production, enabling synergies in the production of food, energy, and water, as well as the preservation of the ecological landscape. Shading management, intensity adjustment, and spectral distribution allow innovative PV systems to generate significant amounts of electricity without affecting agricultural production. Demonstration projects have already been developed around the world and there is a wealth of experience with various design solutions for commercial use. One of these new technologies is concentrator photovoltaics (CPV). The CPV has excellent spectral processing capabilities and highly concentrated power generation efficiency, which makes it a perfect solution for integrating with photosynthesis. This study aims to present the working principle of CPV modules considering agricultural applications and discuss the recent advancements in concentrating agrivoltaics. In this method, the problem of shading is mitigated by two main strategies: (i) parabolic glasses covered with a multilayer dichroic polymer film that reflects near-infrared (NIR) radiation onto the solar cells installed at the focal area and transmits photons in the range of photosynthetically active radiation (PAR), and (ii) highly transparent sun-tracking louvers or Fresnel lenses that concentrate direct sunlight onto the solar cells to generate electricity. In the latter solution, the remaining diffuse sunlight is directed to the ground for use by growing plants. Although the CPV development trend has been slow due to the lower cost of crystalline silicon, the development of CPV for agriculture with accurate spectral separation could revitalize this industry. In this regard, more research and development are needed to evaluate the suitability of materials that split solar radiation and their impacts on the electrical performance of CPV modules, taking into account the physiology of plants.

Suggested Citation

  • Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
  • Handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923001630
    DOI: 10.1016/j.apenergy.2023.120799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jirka, Vladimír & Kučeravý, Vladimír & Malý, Miroslav & Pech, František & Pokorný, Jan, 1999. "Energy flow in a greenhouse equipped with glass raster lenses," Renewable Energy, Elsevier, vol. 16(1), pages 660-664.
    2. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    3. Caleb K. Miskin & Yiru Li & Allison Perna & Ryan G. Ellis & Elizabeth K. Grubbs & Peter Bermel & Rakesh Agrawal, 2019. "Sustainable co-production of food and solar power to relax land-use constraints," Nature Sustainability, Nature, vol. 2(10), pages 972-980, October.
    4. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    5. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    6. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    7. Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Deciding between concentrated and non-concentrated photovoltaic systems via direct comparison of experiment with opto-thermal computation," Renewable Energy, Elsevier, vol. 178(C), pages 1084-1096.
    8. Roslan, N. & Ya'acob, M.E. & Radzi, M.A.M. & Hashimoto, Y. & Jamaludin, D. & Chen, G., 2018. "Dye Sensitized Solar Cell (DSSC) greenhouse shading: New insights for solar radiation manipulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 171-186.
    9. Hoang Vu & Tran Quoc Tien & Jongbin Park & Meeryoung Cho & Ngoc Hai Vu & Seoyong Shin, 2022. "Waveguide Concentrator Photovoltaic with Spectral Splitting for Dual Land Use," Energies, MDPI, vol. 15(6), pages 1-14, March.
    10. Nadal, Miquel & Flexas, Jaume, 2019. "Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rates and water use efficiency in crops," Agricultural Water Management, Elsevier, vol. 216(C), pages 457-472.
    11. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    14. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Wu, Gang & Yang, Qichang & Zhang, Yi & Fang, Hui & Feng, Chaoqing & Zheng, Hongfei, 2020. "Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse," Energy, Elsevier, vol. 197(C).
    16. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    17. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    18. Wang, Gang & Yao, Yubo & Chen, Zeshao & Hu, Peng, 2019. "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology," Energy, Elsevier, vol. 166(C), pages 256-266.
    19. Mahlknecht, Jürgen & González-Bravo, Ramón & Loge, Frank J., 2020. "Water-energy-food security: A Nexus perspective of the current situation in Latin America and the Caribbean," Energy, Elsevier, vol. 194(C).
    20. Gorjian, Shiva & Zadeh, Babak Nemat & Eltrop, Ludger & Shamshiri, Redmond R. & Amanlou, Yasaman, 2019. "Solar photovoltaic power generation in Iran: Development, policies, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 110-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Yuanying Chi & Ruoyang Li & Jialin Li & Shuxia Yang, 2024. "Research on Static Evaluation of Economic Value of “Distributed PV +” Model," Sustainability, MDPI, vol. 16(7), pages 1-17, March.
    3. Vaziri Rad, Mohammad Amin & Forootan Fard, Habib & Khazanedari, Kian & Toopshekan, Ashkan & Ourang, Shiva & Khanali, Majid & Gorjian, Shiva & Fereidooni, Leila & Kasaeian, Alibakhsh, 2024. "A global framework for maximizing sustainable development indexes in agri-photovoltaic-based renewable systems: Integrating DEMATEL, ANP, and MCDM methods," Applied Energy, Elsevier, vol. 360(C).
    4. Yusra Hasan & William David Lubitz, 2024. "A Sustainable Agri-Photovoltaic Greenhouse for Lettuce Production in Qatar," Energies, MDPI, vol. 17(19), pages 1-22, October.
    5. Shalom, Ben Aviad & Mittelman, Gur & Kribus, Abraham & Vitoshkin, Helena, 2023. "Optical and electrical performance of an agrivoltaic field with spectral beam splitting," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Shalom, Ben Aviad & Mittelman, Gur & Kribus, Abraham & Vitoshkin, Helena, 2023. "Optical and electrical performance of an agrivoltaic field with spectral beam splitting," Renewable Energy, Elsevier, vol. 219(P1).
    4. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    5. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).
    7. Sirnik, I. & Sluijsmans, J. & Oudes, D. & Stremke, S., 2023. "Circularity and landscape experience of agrivoltaics: A systematic review of literature and built systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Jamil, Uzair & Hickey, Thomas & Pearce, Joshua M., 2024. "Solar energy modelling and proposed crops for different types of agrivoltaics systems," Energy, Elsevier, vol. 304(C).
    9. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    11. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    12. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    13. C, Rösch & E, Fakharizadehshirazi, 2024. "The spatial socio-technical potential of agrivoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    14. Willockx, Brecht & Reher, Thomas & Lavaert, Cas & Herteleer, Bert & Van de Poel, Bram & Cappelle, Jan, 2024. "Design and evaluation of an agrivoltaic system for a pear orchard," Applied Energy, Elsevier, vol. 353(PB).
    15. Akbar, Asfandyar & Mahmood, Farrukh ibne & Alam, Habeel & Aziz, Farhan & Bashir, Khurram & Zafar Butt, Nauman, 2024. "Field Assessment of Vertical Bifacial Agrivoltaics with Vegetable Production: A Case Study in Lahore, Pakistan," Renewable Energy, Elsevier, vol. 227(C).
    16. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    17. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    18. Al-Amin, & Shafiullah, G.M. & Ferdous, S.M. & Shoeb, Md & Reza, S.M. Shamim & Elavarasan, Rajvikram Madurai & Rahman, Mohammed Moseeur, 2024. "Agrivoltaics system for sustainable agriculture and green energy in Bangladesh," Applied Energy, Elsevier, vol. 371(C).
    19. Varo-Martínez, M. & Fernández-Ahumada, L.M. & Ramírez-Faz, J.C. & Ruiz-Jiménez, R. & López-Luque, R., 2024. "Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants," Applied Energy, Elsevier, vol. 361(C).
    20. Rampinelli, Giuliano Arns & Marcelino, Roderval & Possenti Damasceno, Jonathan & Caroline Stalter, Chaiane & Bouchardet, Arthur Thorstenberg Ribas & Mohr, Gustavo & Guber, Vilson, 2024. "Development of artificial lighting system for light supplementation in smart greenhouses with agrivoltaic systems," Renewable Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923001630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.