IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v133y2014icp89-100.html
   My bibliography  Save this article

Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity

Author

Listed:
  • Cossu, Marco
  • Murgia, Lelia
  • Ledda, Luigi
  • Deligios, Paola A.
  • Sirigu, Antonella
  • Chessa, Francesco
  • Pazzona, Antonio

Abstract

This study assessed the climate conditions inside a greenhouse in which 50% of the roof area was replaced with photovoltaic (PV) modules, describing the solar radiation distribution and the variability of temperature and humidity. The effects of shading from the PV array on crop productivity were described on tomato, also integrating the natural radiation with supplementary lighting powered by PV energy. Experiments were performed inside an east–west oriented greenhouse (total area of 960m2), where the south-oriented roofs were completely covered with multi-crystalline silicon PV modules, with a total rated power of 68kWp. The PV system reduced the availability of solar radiation inside the greenhouse by 64%, compared to the situation without PV system (2684MJm−2 on yearly basis). The solar radiation distribution followed a north–south gradient, with more solar energy on the sidewalls and decreasing towards the center of the span, except in winter, where it was similar in all plant rows. The reduction under the plastic and PV covers was respectively 46% and 82% on yearly basis. Only a 18% reduction was observed on the plant rows farthest from the PV cover of the span. The supplementary lighting, powered without exceeding the energy produced by the PV array, was not enough to affect the crop production, whose revenue was lower than the cost for heating and lighting. The distribution of the solar radiation observed is useful for choosing the most suitable crops and for designing PV greenhouses with the attitude for both energy and crop production.

Suggested Citation

  • Cossu, Marco & Murgia, Lelia & Ledda, Luigi & Deligios, Paola A. & Sirigu, Antonella & Chessa, Francesco & Pazzona, Antonio, 2014. "Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity," Applied Energy, Elsevier, vol. 133(C), pages 89-100.
  • Handle: RePEc:eee:appene:v:133:y:2014:i:c:p:89-100
    DOI: 10.1016/j.apenergy.2014.07.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914007533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wand, Robert & Leuthold, Florian, 2011. "Feed-in tariffs for photovoltaics: Learning by doing in Germany?," Applied Energy, Elsevier, vol. 88(12), pages 4387-4399.
    2. Silva Herran, Diego & Nakata, Toshihiko, 2012. "Design of decentralized energy systems for rural electrification in developing countries considering regional disparity," Applied Energy, Elsevier, vol. 91(1), pages 130-145.
    3. Vadiee, Amir & Martin, Viktoria, 2014. "Energy management strategies for commercial greenhouses," Applied Energy, Elsevier, vol. 114(C), pages 880-888.
    4. Lakhani, Raksha & Doluweera, Ganesh & Bergerson, Joule, 2014. "Internalizing land use impacts for life cycle cost analysis of energy systems: A case of California’s photovoltaic implementation," Applied Energy, Elsevier, vol. 116(C), pages 253-259.
    5. Kim, Ju-Young & Jeon, Gyu-Yeob & Hong, Won-Hwa, 2009. "The performance and economical analysis of grid-connected photovoltaic systems in Daegu, Korea," Applied Energy, Elsevier, vol. 86(2), pages 265-272, February.
    6. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    7. Vats, Kanchan & Tiwari, G.N., 2012. "Energy and exergy analysis of a building integrated semitransparent photovoltaic thermal (BISPVT) system," Applied Energy, Elsevier, vol. 96(C), pages 409-416.
    8. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    9. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    10. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    11. Mondol, Jayanta Deb & Yohanis, Yigzaw G & Norton, Brian, 2009. "Optimising the economic viability of grid-connected photovoltaic systems," Applied Energy, Elsevier, vol. 86(7-8), pages 985-999, July.
    12. Hsu, Chiung-Wen, 2012. "Using a system dynamics model to assess the effects of capital subsidies and feed-in tariffs on solar PV installations," Applied Energy, Elsevier, vol. 100(C), pages 205-217.
    13. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    14. DeBlois, Justin & Bilec, Melissa & Schaefer, Laura, 2013. "Simulating home cooling load reductions for a novel opaque roof solar chimney configuration," Applied Energy, Elsevier, vol. 112(C), pages 142-151.
    15. Li, Danny H.W. & Cheung, K.L. & Lam, Tony N.T. & Chan, Wilco W.H., 2012. "A study of grid-connected photovoltaic (PV) system in Hong Kong," Applied Energy, Elsevier, vol. 90(1), pages 122-127.
    16. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Solar greenhouse an option for renewable and sustainable farming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3934-3945.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    2. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period," Energy, Elsevier, vol. 102(C), pages 302-312.
    3. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    4. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    5. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production," Energies, MDPI, vol. 12(13), pages 1-15, July.
    6. Angel Carreño-Ortega & Emilio Galdeano-Gómez & Juan Carlos Pérez-Mesa & María Del Carmen Galera-Quiles, 2017. "Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect?," Energies, MDPI, vol. 10(6), pages 1-24, May.
    7. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    8. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    9. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    10. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    11. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    12. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    13. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 178-191.
    15. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    16. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    17. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    18. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    19. Quesada, B. & Sánchez, C. & Cañada, J. & Royo, R. & Payá, J., 2011. "Experimental results and simulation with TRNSYS of a 7.2Â kWp grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 88(5), pages 1772-1783, May.
    20. de la Hoz, Jordi & Martín, Helena & Ballart, Jordi & Córcoles, Felipe & Graells, Moisès, 2013. "Evaluating the new control structure for the promotion of grid connected photovoltaic systems in Spain: Performance analysis of the period 2008–2010," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 541-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:133:y:2014:i:c:p:89-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.