IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v333y2023ics0306261922018566.html
   My bibliography  Save this article

Hierarchical reinforcement learning based energy management strategy of plug-in hybrid electric vehicle for ecological car-following process

Author

Listed:
  • Zhang, Hailong
  • Peng, Jiankun
  • Dong, Hanxuan
  • Tan, Huachun
  • Ding, Fan

Abstract

The economy-oriented automated hybrid eclectic vehicles (HEV) provide great potential to save energy by optimizing both driving behaviors and power distribution. Recent advances in the ecological car following issue of HEV focus on fusing adaptive cruise control (ACC) and energy management system (EMS) by collaborative optimization. However, series control frameworks ACC+EMS breaks the internal coupling relation between motion control and energy distribution, leading to the natural limitation of its optimization. On the opposite, integrated ACC-EMS promises energy-saving improvement but brings complex optimization problems with multi-scale objectives and large exploration space. The huge computation load restricts the online application of ACC-EMS. To address these problems, a hierarchical reinforcement learning based ACC-EMS strategy is proposed with a hierarchical policy and non-hierarchical execution. The upper layer learns to plan state-of-charge and time-headway trajectories, while the low layer policy learns to achieve the expected goals by outputting control variables executed by the host vehicle. The proposed ACC-EMS strategy were self-learning by interaction in car-following scenario constructed with GPS data on I-880 highway. Comprehensive simulations show the proposed strategy has significantly improved the training speed and stability, compared to the offline global optimum, achieving the energy consumption difference of less than 3% and computational load of less than 600 times.

Suggested Citation

  • Zhang, Hailong & Peng, Jiankun & Dong, Hanxuan & Tan, Huachun & Ding, Fan, 2023. "Hierarchical reinforcement learning based energy management strategy of plug-in hybrid electric vehicle for ecological car-following process," Applied Energy, Elsevier, vol. 333(C).
  • Handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018566
    DOI: 10.1016/j.apenergy.2022.120599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922018566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
    2. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    3. Xie, Shanshan & He, Hongwen & Peng, Jiankun, 2017. "An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 196(C), pages 279-288.
    4. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    2. Li, Jie & Wu, Xiaodong & Fan, Jiawei & Liu, Yonggang & Xu, Min, 2023. "Overcoming driving challenges in complex urban traffic: A multi-objective eco-driving strategy via safety model based reinforcement learning," Energy, Elsevier, vol. 284(C).
    3. Imre Zsombok, 2024. "Investigating energy management of hybrid vehicle technologies to promote sustainable mobility paradigms," Cognitive Sustainability, Cognitive Sustainability Ltd., vol. 3(1), pages 38-44, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    2. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    3. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    4. Zhang, Hailong & Peng, Jiankun & Tan, Huachun & Dong, Hanxuan & Ding, Fan & Ran, Bin, 2020. "Tackling SOC long-term dynamic for energy management of hybrid electric buses via adaptive policy optimization," Applied Energy, Elsevier, vol. 269(C).
    5. Fan, Likang & Wang, Jun & Peng, Yiqiang & Sun, Hongwei & Bao, Xiuchao & Zeng, Baoquan & Wei, Hongqian, 2024. "Real-time energy management strategy with dynamically updating equivalence factor for through-the-road (TTR) hybrid vehicles," Energy, Elsevier, vol. 298(C).
    6. Feras Alasali & Stephen Haben & Husam Foudeh & William Holderbaum, 2020. "A Comparative Study of Optimal Energy Management Strategies for Energy Storage with Stochastic Loads," Energies, MDPI, vol. 13(10), pages 1-19, May.
    7. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    8. Felipe Jiménez & Wilmar Cabrera-Montiel, 2014. "System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information," Energies, MDPI, vol. 7(6), pages 1-23, June.
    9. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    10. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    11. Kortas, Imen & Sakly, Anis & Mimouni, Mohamed Faouzi, 2015. "Analytical solution of optimized energy consumption of Double Star Induction Motor operating in transient regime using a Hamilton–Jacobi–Bellman equation," Energy, Elsevier, vol. 89(C), pages 55-64.
    12. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    13. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    14. Andre T. Puati Zau & Mpho J. Lencwe & S. P. Daniel Chowdhury & Thomas O. Olwal, 2022. "A Battery Management Strategy in a Lead-Acid and Lithium-Ion Hybrid Battery Energy Storage System for Conventional Transport Vehicles," Energies, MDPI, vol. 15(7), pages 1-29, April.
    15. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    16. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    17. Yu, Xiao & Lin, Cheng & Tian, Yu & Zhao, Mingjie & Liu, Huimin & Xie, Peng & Zhang, JunZhi, 2023. "Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system," Energy, Elsevier, vol. 272(C).
    18. Liu, Hanyou & Fan, Ailong & Li, Yongping & Bucknall, Richard & Chen, Li, 2024. "Hierarchical distributed MPC method for hybrid energy management: A case study of ship with variable operating conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    20. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.