IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics030626192200900x.html
   My bibliography  Save this article

Online learning predictive power coordinated control strategy for off-road hybrid electric vehicles considering the dynamic response of engine generator set

Author

Listed:
  • Chen, Ruihu
  • Yang, Chao
  • Ma, Yue
  • Wang, Weida
  • Wang, Muyao
  • Du, Xuelong

Abstract

For off-road hybrid electric vehicles (HEV), due to the variability of road environments and the dynamic and deferred response characteristic of the engine generator set (EGS) for off-road HEVs, it is difficult to coordinate the power output of multi-energy sources to meet the demand power of the vehicle. Therefore, designing an efficient power control strategy for off-road HEVs remains a major challenge. Motivated by this issue, an online learning predictive power coordinated control strategy for off-road HEVs is proposed in this study. Firstly, the online sequential extreme learning machine is used for short-term power prediction for the first time. With the online learning capability, the precision of power prediction under irregular road conditions is significantly improved. Secondly, to determine the optimal control behavior of power distribution between two energy sources, a novel predictive adaptive equivalent consumption minimization strategy is designed. The equivalent factor is rolling optimized in the prediction horizon to maintain battery state of charge and ensure fuel economy. Thirdly, considering the actual response process of EGS, a one-step-ahead coordinated control is presented to guarantee adequate electric power output. Finally, the performance of the proposed strategy is verified by simulation and hardware-in-loop test. The results show that fuel consumption using the proposed strategy is reduced by 6.72% and 8.63% over benchmark method under the two test driving cycles, respectively. Meanwhile, the setting time of EGS power is decreased by 61.12% and 64.63% to ensure the dynamic performance of vehicle.

Suggested Citation

  • Chen, Ruihu & Yang, Chao & Ma, Yue & Wang, Weida & Wang, Muyao & Du, Xuelong, 2022. "Online learning predictive power coordinated control strategy for off-road hybrid electric vehicles considering the dynamic response of engine generator set," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s030626192200900x
    DOI: 10.1016/j.apenergy.2022.119592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200900X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Quan & Li, Yanfei & Zhao, Dezong & Li, Ji & Williams, Huw & Xu, Hongming & Yan, Fuwu, 2022. "Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression," Applied Energy, Elsevier, vol. 305(C).
    2. Cipek, Mihael & Kasać, Josip & Pavković, Danijel & Zorc, Davor, 2020. "A novel cascade approach to control variables optimisation for advanced series-parallel hybrid electric vehicle power-train," Applied Energy, Elsevier, vol. 276(C).
    3. Li, Liang & You, Sixiong & Yang, Chao & Yan, Bingjie & Song, Jian & Chen, Zheng, 2016. "Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 162(C), pages 868-879.
    4. Zhou, Quan & Li, Ji & Shuai, Bin & Williams, Huw & He, Yinglong & Li, Ziyang & Xu, Hongming & Yan, Fuwu, 2019. "Multi-step reinforcement learning for model-free predictive energy management of an electrified off-highway vehicle," Applied Energy, Elsevier, vol. 255(C).
    5. Shabbir, Wassif & Evangelou, Simos A., 2019. "Threshold-changing control strategy for series hybrid electric vehicles," Applied Energy, Elsevier, vol. 235(C), pages 761-775.
    6. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    7. Wang, Hong & Huang, Yanjun & Khajepour, Amir & Song, Qiang, 2016. "Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 182(C), pages 105-114.
    8. Han, Xuefeng & He, Hongwen & Wu, Jingda & Peng, Jiankun & Li, Yuecheng, 2019. "Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 254(C).
    9. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    2. Wang, Shuai & Wu, Xiuheng & Zhao, Xueyan & Wang, Shilong & Xie, Bin & Song, Zhenghe & Wang, Dongqing, 2023. "Co-optimization energy management strategy for a novel dual-motor drive system of electric tractor considering efficiency and stability," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baodi Zhang & Sheng Guo & Xin Zhang & Qicheng Xue & Lan Teng, 2020. "Adaptive Smoothing Power Following Control Strategy Based on an Optimal Efficiency Map for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 13(8), pages 1-25, April.
    2. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    3. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Liu, Huanlong & Chen, Guanpeng & Li, Dafa & Wang, Jiawei & Zhou, Jianyi, 2021. "Energy active adjustment and bidirectional transfer management strategy of the electro-hydrostatic hydraulic hybrid powertrain for battery bus," Energy, Elsevier, vol. 230(C).
    6. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    7. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    8. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
    9. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    10. Yang, Ningkang & Han, Lijin & Bo, Lin & Liu, Baoshuai & Chen, Xiuqi & Liu, Hui & Xiang, Changle, 2023. "Real-time adaptive energy management for off-road hybrid electric vehicles based on decision-time planning," Energy, Elsevier, vol. 282(C).
    11. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    12. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    13. Lin, Xinyou & Huang, Hao & Xu, Xinhao & Xie, Liping, 2024. "Dynamic programming solutions extracted SOC-trajectory online learning generation algorithm based approximate global optimization control strategy for a fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 295(C).
    14. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    15. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
    16. Rezaei, A. & Burl, J.B. & Solouk, A. & Zhou, B. & Rezaei, M. & Shahbakhti, M., 2017. "Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles," Applied Energy, Elsevier, vol. 208(C), pages 655-665.
    17. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
    18. Hua, Min & Zhang, Cetengfei & Zhang, Fanggang & Li, Zhi & Yu, Xiaoli & Xu, Hongming & Zhou, Quan, 2023. "Energy management of multi-mode plug-in hybrid electric vehicle using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 348(C).
    19. Qin, Zhaobo & Luo, Yugong & Zhuang, Weichao & Pan, Ziheng & Li, Keqiang & Peng, Huei, 2018. "Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles," Applied Energy, Elsevier, vol. 212(C), pages 1627-1641.
    20. Stefan Milićević & Ivan Blagojević & Saša Milojević & Milan Bukvić & Blaža Stojanović, 2024. "Numerical Analysis of Optimal Hybridization in Parallel Hybrid Electric Powertrains for Tracked Vehicles," Energies, MDPI, vol. 17(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s030626192200900x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.