IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp1112-1122.html
   My bibliography  Save this article

A review on preparation methods, stability and applications of hybrid nanofluids

Author

Listed:
  • Che Sidik, Nor Azwadi
  • Mahmud Jamil, Muhammad
  • Aziz Japar, Wan Mohd Arif
  • Muhammad Adamu, Isa

Abstract

Hybrid nanofluid is a new class of nanofluids engineered by dispersing two different nanoparticles into conventional heat transfer fluid. Hybrid nanofluids are potential fluids that offer better heat transfer performance and thermo-physical properties than convectional heat transfer fluids (oil, water and ethylene glycol) and nanofluids with single nanoparticles. Scientific findings have indicated that hybrid nanofluid can replace single nanofluid since it provides more heat transfer enhancement especially in the areas of automobile, electro-mechanical, manufacturing process, HVAC and solar energy. In this paper, we summarized the recent progress related to preparation methods of hybrid nanofluids, factors affecting their stability, methods of enhancing thermal properties and current applications of hybrid nanofluids. Finally, some challenging issues that need to be solved for future research are discussed.

Suggested Citation

  • Che Sidik, Nor Azwadi & Mahmud Jamil, Muhammad & Aziz Japar, Wan Mohd Arif & Muhammad Adamu, Isa, 2017. "A review on preparation methods, stability and applications of hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1112-1122.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1112-1122
    DOI: 10.1016/j.rser.2017.05.221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.
    2. Bigdeli, Masoud Bozorg & Fasano, Matteo & Cardellini, Annalisa & Chiavazzo, Eliodoro & Asinari, Pietro, 2016. "A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1615-1633.
    3. Mohammad Zadeh, P. & Sokhansefat, T. & Kasaeian, A.B. & Kowsary, F. & Akbarzadeh, A., 2015. "Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid," Energy, Elsevier, vol. 82(C), pages 857-864.
    4. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    5. Muhammad, Mahmud Jamil & Muhammad, Isa Adamu & Sidik, Nor Azwadi Che & Yazid, Muhammad Noor Afiq Witri Muhammad & Mamat, Rizalman & Najafi, G., 2016. "The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 226-236.
    6. Sundar, L. Syam & Sharma, K.V. & Singh, Manoj K. & Sousa, A.C.M., 2017. "Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 185-198.
    7. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    8. Behrouz Takabi & Hossein Shokouhmand, 2015. "Effects ofAl2O3–Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(04), pages 1-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Mohammad Hossein & Ghazvini, Mahyar & Maddah, Heydar & Kahani, Mostafa & Pourfarhang, Samira & Pourfarhang, Amin & Heris, Saeed Zeinali, 2020. "Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Minea, Alina Adriana & El-Maghlany, Wael M., 2018. "Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison," Renewable Energy, Elsevier, vol. 120(C), pages 350-364.
    4. Alshehri, Fahad & Goraniya, Jaydeep & Combrinck, Madeleine L., 2020. "Numerical investigation of heat transfer enhancement of a water/ethylene glycol mixture with Al2O3–TiO2 nanoparticles," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Skrbek, Kryštof & Bartůněk, Vilém & Sedmidubský, David, 2022. "Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    2. Minea, Alina Adriana, 2017. "Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 426-434.
    3. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    4. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    5. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    6. M. Z. Saghir & M. M. Rahman, 2020. "Forced Convection of Al 2 O 3 –Cu, TiO 2 –SiO 2 , FWCNT–Fe 3 O 4 , and ND–Fe 3 O 4 Hybrid Nanofluid in Porous Media," Energies, MDPI, vol. 13(11), pages 1-19, June.
    7. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    9. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    10. Rajput, Usman Jamil & Alhadrami, Hani & Al-Hazmi, Faten & Guo, Quiquan & Yang, Jun, 2017. "Initial investigations of a combined photo-assisted water cleaner and thermal collector," Renewable Energy, Elsevier, vol. 113(C), pages 235-247.
    11. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Suganthi, K.S. & Rajan, K.S., 2017. "Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 226-255.
    13. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    14. Yazid, Muhammad Noor Afiq Witri Muhammad & Sidik, Nor Azwadi Che & Yahya, Wira Jazair, 2017. "Heat and mass transfer characteristics of carbon nanotube nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 914-941.
    15. Arora, Neeti & Gupta, Munish, 2020. "An updated review on application of nanofluids in flat tubes radiators for improving cooling performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).
    19. Wasim Jamshed & Rabia Safdar & Ameni Brahmia & Abdullah K. Alanazi & Hala M. Abo-Dief & Mohamed Rabea Eid, 2023. "Numerical Simulations of Environmental Energy Features in Solar Pump Application by Using Hybrid Nanofluid Flow: Prandtl-Eyring Case," Energy & Environment, , vol. 34(4), pages 780-807, June.
    20. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1112-1122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.