Single-atom solutions promote carbon dioxide capture
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.120570
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2022. "Exergoeconomic analysis and optimization of a solar energy-based integrated system with oxy-combustion for combined power cycle and carbon capturing," Energy, Elsevier, vol. 250(C).
- Yu, Shiwei & Zheng, Shuhong & Li, Xia & Li, Longxi, 2018. "China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring," Energy Economics, Elsevier, vol. 73(C), pages 91-107.
- Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).
- Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
- Kang Jiang & Min Luo & Zhixiao Liu & Ming Peng & Dechao Chen & Ying-Rui Lu & Ting-Shan Chan & Frank M. F. Groot & Yongwen Tan, 2021. "Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
- Huang, Weijia & Zheng, Danxing & Xie, Hui & Li, Yun & Wu, Weize, 2019. "Hybrid physical-chemical absorption process for carbon capture with strategy of high-pressure absorption/medium-pressure desorption," Applied Energy, Elsevier, vol. 239(C), pages 928-937.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ogutu B. Osoro & Edward J. Oughton & Andrew R. Wilson & Akhil Rao, 2023. "Sustainability assessment of Low Earth Orbit (LEO) satellite broadband megaconstellations," Papers 2309.02338, arXiv.org, revised Mar 2024.
- Qiu, Ziyang & Sun, Jingchao & Du, Tao & Na, Hongming & Zhang, Lei & Yuan, Yuxing & Wang, Yisong, 2024. "Impact of hydrogen metallurgy on the current iron and steel industry: A comprehensive material-exergy-emission flow analysis," Applied Energy, Elsevier, vol. 356(C).
- Gür, Turgut M., 2024. "Giga-ton and tera-watt scale challenges at the energy - climate crossroads: A global perspective," Energy, Elsevier, vol. 290(C).
- Sadiq, Muhammad & Alshehhi, Reem J. & Urs, Rahul Rajeevkumar & Mayyas, Ahmad T., 2023. "Techno-economic analysis of Green-H2@Scale production," Renewable Energy, Elsevier, vol. 219(P1).
- Meng, Fanli & Fu, Kun & Wang, Xueli & Wang, Yixiao & Wang, Lemeng & Fu, Dong, 2024. "Study on absorption and regeneration performance of EHA-DMSO non-aqueous absorbent for CO2 capture from flue gas," Energy, Elsevier, vol. 286(C).
- Jiang, Kaiqi & Li, Kangkang, 2023. "Harvesting CO2 reaction enthalpy from amine scrubbing," Energy, Elsevier, vol. 284(C).
- Niu, Yingjie & Li, Ting & Barzagli, Francesco & Li, Chao'en & Amer, Mohammad W. & Zhang, Rui, 2024. "Fly ash as a cost-effective catalyst to promote sorbent regeneration for energy efficient CO2 capture," Energy, Elsevier, vol. 294(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
- Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
- Bihong, Lv & Kexuan, Yang & Xiaobin, Zhou & Zuoming, Zhou & Guohua, Jing, 2020. "2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture," Applied Energy, Elsevier, vol. 264(C).
- Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
- Xu, Guangyue & Dong, Haoyun & Xu, Zhenci & Bhattarai, Nishan, 2022. "China can reach carbon neutrality before 2050 by improving economic development quality," Energy, Elsevier, vol. 243(C).
- Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
- Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
- Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
- Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
- Kim, Seonggon & Ko, Yunmo & Lee, Geun Jeong & Lee, Jae Won & Xu, Ronghuan & Ahn, Hyungseop & Kang, Yong Tae, 2023. "Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents," Energy, Elsevier, vol. 267(C).
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Jie Xu & Gonglei Shao & Xuan Tang & Fang Lv & Haiyan Xiang & Changfei Jing & Song Liu & Sheng Dai & Yanguang Li & Jun Luo & Zhen Zhou, 2022. "Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Liu, Junling & Wang, Ke & Zou, Ji & Kong, Ying, 2019. "The implications of coal consumption in the power sector for China’s CO2 peaking target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
- Russell, Callum & Rodriguez, Cristina, 2023. "Lipid extraction from Chlorella vulgaris & Haematococcus pluvialis using the switchable solvent DMCHA for biofuel production," Energy, Elsevier, vol. 278(PB).
- Wang, Linhui & Chen, Qi & Dong, Zhiqing & Cheng, Lu, 2024. "The role of industrial intelligence in peaking carbon emissions in China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
- Feng Wang & Min Wu & Jiachen Hong, 2020. "Exploring the Effects of Industrial Structure, Technology, and Energy Efficiency on China’s Carbon Intensity and Their Contributions to Carbon Intensity Target," Sustainability, MDPI, vol. 12(19), pages 1-24, September.
- Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2020. "How and when does information publicity affect public acceptance of nuclear energy?," Energy, Elsevier, vol. 198(C).
- Gao, Wanlin & Zhou, Tuantuan & Gao, Yanshan & Wang, Qiang, 2019. "Enhanced water gas shift processes for carbon dioxide capture and hydrogen production," Applied Energy, Elsevier, vol. 254(C).
More about this item
Keywords
Single-atom solutions; Carbon dioxide capture; DFT; Copper single atom; Boron single atom;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:332:y:2023:i:c:s030626192201827x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.