Phosphorus-doped graphite felt allowing stabilized electrochemical interface and hierarchical pore structure for redox flow battery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.114369
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zeng, Yikai & Yang, Zhifei & Lu, Fei & Xie, Yongliang, 2019. "A novel tin-bromine redox flow battery for large-scale energy storage," Applied Energy, Elsevier, vol. 255(C).
- Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Jiang, H.R. & Shyy, W. & Wu, M.C. & Zhang, R.H. & Zhao, T.S., 2019. "A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 105-113.
- Jiang, H.R. & Shyy, W. & Ren, Y.X. & Zhang, R.H. & Zhao, T.S., 2019. "A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 544-553.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ma, Qiang & Fu, Wenxuan & Zhao, Lijuan & Chen, Zhenqian & Su, Huaneng & Xu, Qian, 2023. "A double-layer electrode for the negative side of deep eutectic solvent electrolyte-based vanadium-iron redox flow battery," Energy, Elsevier, vol. 265(C).
- Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
- Shi, Yu & An, Yichao & Tang, Zhiqiang & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang, 2022. "Electrical power production of thermally regenerative ammonia-based batteries using reduced graphene oxide modified Ni foam composite electrodes," Applied Energy, Elsevier, vol. 326(C).
- Liming Chen & Tao Liu & Yimin Zhang & Hong Liu & Muqing Ding & Dong Pan, 2022. "Mitigating Capacity Decay by Adding Carbohydrate in the Negative Electrolyte of Vanadium Redox Flow Battery," Energies, MDPI, vol. 15(7), pages 1-16, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
- Sun, J. & Jiang, H.R. & Zhang, B.W. & Chao, C.Y.H. & Zhao, T.S., 2020. "Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 259(C).
- Jiang, H.R. & Zeng, Y.K. & Wu, M.C. & Shyy, W. & Zhao, T.S., 2019. "A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 240(C), pages 226-235.
- Zhang, Kaiyue & Xiong, Jing & Yan, Chuanwei & Tang, Ao, 2020. "In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design," Applied Energy, Elsevier, vol. 272(C).
- Culcasi, Andrea & Gurreri, Luigi & Zaffora, Andrea & Cosenza, Alessandro & Tamburini, Alessandro & Micale, Giorgio, 2020. "On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients," Applied Energy, Elsevier, vol. 277(C).
- Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
- Sun, J. & Jiang, H.R. & Wu, M.C. & Fan, X.Z. & Chao, C.Y.H. & Zhao, T.S., 2020. "Aligned hierarchical electrodes for high-performance aqueous redox flow battery," Applied Energy, Elsevier, vol. 271(C).
- Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
- Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Alexandros Arsalis & George E. Georghiou & Panos Papanastasiou, 2022. "Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems," Energies, MDPI, vol. 15(10), pages 1-24, May.
- Mengfan Li & Xu Cheng, 2024. "Aggregation-induced C–C bond formation on an electrode driven by the surface tension of water," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Wan, Shuaibin & Liang, Xiongwei & Jiang, Haoran & Sun, Jing & Djilali, Ned & Zhao, Tianshou, 2021. "A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries," Applied Energy, Elsevier, vol. 298(C).
- Fang, Yuan & Zhang, Tingting & Wang, Yonghui & Chen, Yuanzhen & Liu, Yan & Wu, Wenling & Zhu, Jianfeng, 2020. "The highly efficient cathode of framework structural Fe2O3/Mn2O3 in passive direct methanol fuel cells," Applied Energy, Elsevier, vol. 259(C).
- Bates, Alex M. & Paxton, William F. & Spurgeon, Joshua M. & Park, Sam D. & Sunkara, Mahendra K., 2021. "Earth-abundant redox couples using durable boron doped diamond electrodes: Beyond vanadium redox couples," Applied Energy, Elsevier, vol. 282(PB).
- Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Yao, 2022. "Efficient bubble energy harvesting by promoting pressure potential energy release using helix flow channel," Applied Energy, Elsevier, vol. 328(C).
- Leung, P. & Martin, T. & Xu, Q. & Flox, C. & Mohamad, M.R. & Palma, J. & Rodchanarowan, A. & Zhu, X. & Xing, W.W. & Shah, A.A., 2021. "A new aqueous all-organic flow battery with high cell voltage in acidic electrolytes," Applied Energy, Elsevier, vol. 282(PA).
More about this item
Keywords
Large-scale energy storage; Flow battery; Phosphorus-doped electrode; Hierarchical pore structure; Energy efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320562. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.