IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i10p3972-3985d20687.html
   My bibliography  Save this article

Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

Author

Listed:
  • Alexandre Hugo

    (Halsall Associates, 2300 Yonge Street, Suite 2300 Toronto, Ontario M4P 1E4, Canada)

  • Radu Zmeureanu

    (Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montréal, Québec H3G 1M8, Canada)

Abstract

The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

Suggested Citation

  • Alexandre Hugo & Radu Zmeureanu, 2012. "Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage," Energies, MDPI, vol. 5(10), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:3972-3985:d:20687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/10/3972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/10/3972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richards, B.S. & Watt, M.E., 2007. "Permanently dispelling a myth of photovoltaics via the adoption of a new net energy indicator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 162-172, January.
    2. Ardente, Fulvio & Beccali, Giorgio & Cellura, Maurizio & Lo Brano, Valerio, 2005. "Life cycle assessment of a solar thermal collector," Renewable Energy, Elsevier, vol. 30(7), pages 1031-1054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xun Yang & Yong Wang & Teng Xiong, 2017. "Numerical and Experimental Study on a Solar Water Heating System in Lhasa," Energies, MDPI, vol. 10(7), pages 1-13, July.
    2. Zhijian Liu & Hao Li & Xinyu Zhang & Guangya Jin & Kewei Cheng, 2015. "Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine," Energies, MDPI, vol. 8(8), pages 1-21, August.
    3. Tong, Xin & Liu, Su & Yan, Junchen & Broesicke, Osvaldo A. & Chen, Yongsheng & Crittenden, John, 2020. "Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration," Applied Energy, Elsevier, vol. 259(C).
    4. Keiner, Dominik & Thoma, Christian & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Seasonal hydrogen storage for residential on- and off-grid solar photovoltaics prosumer applications: Revolutionary solution or niche market for the energy transition until 2050?," Applied Energy, Elsevier, vol. 340(C).
    5. Lamnatou, Chr. & Cristofari, C. & Chemisana, D. & Canaletti, J.L., 2016. "Building-integrated solar thermal systems based on vacuum-tube technology: Critical factors focusing on life-cycle environmental profile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1199-1215.
    6. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    7. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
    8. Elena G. Dascalaki & Poulia A. Argiropoulou & Constantinos A. Balaras & Kalliopi G. Droutsa & Simon Kontoyiannidis, 2020. "Benchmarks for Embodied and Operational Energy Assessment of Hellenic Single-Family Houses," Energies, MDPI, vol. 13(17), pages 1-36, August.
    9. Anh Tuan Le & Liang Wang & Yang Wang & Ngoc Tuan Vu & Daoliang Li, 2020. "Experimental Validation of a Low-Energy-Consumption Heating Model for Recirculating Aquaponic Systems," Energies, MDPI, vol. 13(8), pages 1-20, April.
    10. Rokas Valančius & Andrius Jurelionis & Rolandas Jonynas & Vladislovas Katinas & Eugenijus Perednis, 2015. "Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania," Energies, MDPI, vol. 8(6), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernandez, Patxi & Kenny, Paul, 2011. "Development of a methodology for life cycle building energy ratings," Energy Policy, Elsevier, vol. 39(6), pages 3779-3788, June.
    2. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    3. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    4. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    5. Lund, P.D., 2007. "Upfront resource requirements for large-scale exploitation schemes of new renewable technologies," Renewable Energy, Elsevier, vol. 32(3), pages 442-458.
    6. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    7. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    8. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    9. Motte, F. & Notton, G. & Lamnatou, Chr & Cristofari, C. & Chemisana, D., 2019. "Numerical study of PCM integration impact on overall performances of a highly building-integrated solar collector," Renewable Energy, Elsevier, vol. 137(C), pages 10-19.
    10. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    11. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
    14. Sumper, Andreas & Robledo-García, Mercedes & Villafáfila-Robles, Roberto & Bergas-Jané, Joan & Andrés-Peiró, Juan, 2011. "Life-cycle assessment of a photovoltaic system in Catalonia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3888-3896.
    15. Jorge, Raquel S. & Hertwich, Edgar G., 2013. "Environmental evaluation of power transmission in Norway," Applied Energy, Elsevier, vol. 101(C), pages 513-520.
    16. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2011. "Sensitivity analysis to quantify uncertainty in Life Cycle Assessment: The case study of an Italian tile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4697-4705.
    17. Gagliano, Antonio & Aneli, Stefano & Nocera, Francesco, 2019. "Analysis of the performance of a building solar thermal facade (BSTF) for domestic hot water production," Renewable Energy, Elsevier, vol. 142(C), pages 511-526.
    18. Yuanfeng Wang & Bo Pang & Xiangjie Zhang & Jingjing Wang & Yinshan Liu & Chengcheng Shi & Shuowen Zhou, 2020. "Life Cycle Environmental Costs of Buildings," Energies, MDPI, vol. 13(6), pages 1-15, March.
    19. Nikolic, D. & Skerlic, J. & Radulovic, J. & Miskovic, A. & Tamasauskas, R. & Sadauskienė, J., 2022. "Exergy efficiency optimization of photovoltaic and solar collectors’ area in buildings with different heating systems," Renewable Energy, Elsevier, vol. 189(C), pages 1063-1073.
    20. Robert S. Frazier & Enze Jin & Ajay Kumar, 2015. "Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning," Energies, MDPI, vol. 8(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:3972-3985:d:20687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.