Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120798
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Zhenyu & Siddiqi, Afreen & Anadon, Laura Diaz & Narayanamurti, Venkatesh, 2018. "Towards sustainability in water-energy nexus: Ocean energy for seawater desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3833-3847.
- Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2017. "Performance evaluation of a solar-driven adsorption desalination-cooling system," Energy, Elsevier, vol. 128(C), pages 196-207.
- Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
- Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
- Carati, A. & Marino, M. & Brogioli, D., 2015. "Thermodynamic study of a distiller-electrochemical cell system for energy production from low temperature heat sources," Energy, Elsevier, vol. 93(P1), pages 984-993.
- Arias, Francisco J., 2019. "On osmotic heat powered cycles driven by thermal saturation-precipitation of aqueous solutions," Energy, Elsevier, vol. 186(C).
- Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
- Patricia Palenzuela & Marina Micari & Bartolomé Ortega-Delgado & Francesco Giacalone & Guillermo Zaragoza & Diego-César Alarcón-Padilla & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2018. "Performance Analysis of a RED-MED Salinity Gradient Heat Engine," Energies, MDPI, vol. 11(12), pages 1-23, December.
- Di Michele, F. & Felaco, E. & Gasser, I. & Serbinovskiy, A. & Struchtrup, H., 2019. "Modeling, simulation and optimization of a pressure retarded osmosis power station," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 189-207.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 93(P2), pages 2079-2086.
- Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
- Rezk, Ahmed & AL-Dadah, Raya & Mahmoud, Saad & Elsayed, Ahmed, 2013. "Investigation of Ethanol/metal organic frameworks for low temperature adsorption cooling applications," Applied Energy, Elsevier, vol. 112(C), pages 1025-1031.
- Olkis, C. & Santori, G. & Brandani, S., 2018. "An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat," Applied Energy, Elsevier, vol. 231(C), pages 222-234.
- Bevacqua, M. & Tamburini, A. & Papapetrou, M. & Cipollina, A. & Micale, G. & Piacentino, A., 2017. "Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion," Energy, Elsevier, vol. 137(C), pages 1293-1307.
- Giacalone, F. & Olkis, C. & Santori, G. & Cipollina, A. & Brandani, S. & Micale, G., 2019. "Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis," Energy, Elsevier, vol. 166(C), pages 674-689.
- Long, Rui & Zhao, Yanan & Luo, Zuoqing & Li, Lei & Liu, Zhichun & Liu, Wei, 2020. "Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting," Energy, Elsevier, vol. 195(C).
- Tamburini, A. & Tedesco, M. & Cipollina, A. & Micale, G. & Ciofalo, M. & Papapetrou, M. & Van Baak, W. & Piacentino, A., 2017. "Reverse electrodialysis heat engine for sustainable power production," Applied Energy, Elsevier, vol. 206(C), pages 1334-1353.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat," Energy, Elsevier, vol. 87(C), pages 463-469.
- Anthony P. Straub & Ngai Yin Yip & Shihong Lin & Jongho Lee & Menachem Elimelech, 2016. "Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes," Nature Energy, Nature, vol. 1(7), pages 1-6, July.
- Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2018. "Direct contact membrane distillation system for waste heat recovery: Modelling and multi-objective optimization," Energy, Elsevier, vol. 148(C), pages 1060-1068.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Long, Rui & Zhao, Yanan & Luo, Zuoqing & Li, Lei & Liu, Zhichun & Liu, Wei, 2020. "Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting," Energy, Elsevier, vol. 195(C).
- Ortega-Delgado, B. & Giacalone, F. & Cipollina, A. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G., 2019. "Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Tian, Hailong & Wang, Ying & Pei, Yuansheng & Crittenden, John C., 2020. "Unique applications and improvements of reverse electrodialysis: A review and outlook," Applied Energy, Elsevier, vol. 262(C).
- Giacalone, F. & Olkis, C. & Santori, G. & Cipollina, A. & Brandani, S. & Micale, G., 2019. "Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis," Energy, Elsevier, vol. 166(C), pages 674-689.
- Michael Papapetrou & George Kosmadakis & Francesco Giacalone & Bartolomé Ortega-Delgado & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2019. "Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System," Energies, MDPI, vol. 12(17), pages 1-26, August.
- Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
- Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
- Liu, Zijian & Lu, Ding & Guo, Hao & Zhang, Jiayu & Tao, Shen & Chen, Rundong & Chen, LingYu & Gong, Maoqiong, 2023. "Experimental study and prospect analysis of LiBr-H2O reverse electrodialysis heat engine," Applied Energy, Elsevier, vol. 350(C).
- Patricia Palenzuela & Marina Micari & Bartolomé Ortega-Delgado & Francesco Giacalone & Guillermo Zaragoza & Diego-César Alarcón-Padilla & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2018. "Performance Analysis of a RED-MED Salinity Gradient Heat Engine," Energies, MDPI, vol. 11(12), pages 1-23, December.
- Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
- Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
- Olkis, Christopher & AL-Hasni, Shihab & Brandani, Stefano & Vasta, Salvatore & Santori, Giulio, 2021. "Solar powered adsorption desalination for Northern and Southern Europe," Energy, Elsevier, vol. 232(C).
- Tufa, Ramato Ashu & Noviello, Ylenia & Di Profio, Gianluca & Macedonio, Francesca & Ali, Aamer & Drioli, Enrico & Fontananova, Enrica & Bouzek, Karel & Curcio, Efrem, 2019. "Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
- Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
- Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
- Wu, Xi & Zhang, Xinjie & Xu, Shiming & Gong, Ying & Yang, Shuaishuai & Jin, Dongxu, 2021. "Performance of a reverse electrodialysis cell working with potassium acetate−methanol−water solution," Energy, Elsevier, vol. 232(C).
- Luo, Qizhao & Pei, Junxian & Yun, Panfeng & Hu, Xuejiao & Cao, Bin & Shan, Kunpeng & Tang, Bin & Huang, Kaiming & Chen, Aofei & Huang, Lu & Huang, Zhi & Jiang, Haifeng, 2023. "Simultaneous water production and electricity generation driven by synergistic temperature-salinity gradient in thermo-osmosis process," Applied Energy, Elsevier, vol. 351(C).
- Giacalone, F. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G. & Cipollina, A., 2019. "Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment," Energy, Elsevier, vol. 181(C), pages 532-547.
- Luberti, Mauro & Gowans, Robert & Finn, Patrick & Santori, Giulio, 2022. "An estimate of the ultralow waste heat available in the European Union," Energy, Elsevier, vol. 238(PC).
More about this item
Keywords
Osmotic heat engine; Adsorption-based desalination; Low temperature heat; Energy efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:229:y:2021:i:c:s036054422101046x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.