IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1933-d159780.html
   My bibliography  Save this article

Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles

Author

Listed:
  • Xingyue Jiang

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China)

  • Jianjun Hu

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
    College of Automotive Engineering, Chongqing University, Chongqing 400044, China)

  • Meixia Jia

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China)

  • Yong Zheng

    (State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China)

Abstract

In order to complete the reasonable parameter matching of the pure electric vehicle (PEV) with a hybrid energy storage system (HESS) consisting of a battery pack and an ultra-capacitor pack, the impact of the selection of the economic index and the control strategy on the parameters matching cannot be ignored. This paper applies a more comprehensive total cost of ownership (TCO) of HESS as the optimal target and proposes an optimal methodology integrating parameters and control strategy for the PEV with HESS. Through the integrated optimal methodology, the application value of HESS is analyzed under various types of driving cycles and the results indicate that the HESS can significantly improve the economic performance of PEVs under both urban and suburban driving cycles. Due to the poor adaptability of traditional control strategies to different driving cycles, a novel extreme learning machine (ELM) based controller is established. Firstly, a dynamic programming (DP) based controller is applied for the offline optimization of the HESS power allocation under several typical driving cycles. Then, an analytical method combining correlation analysis and mean impact value (MIV) is employed to deal with offline sample data from DP and obtain the characteristic variables of the ELM model. Ultimately, the instantaneous power allocation strategy of HESS is acquired by utilizing ELM to learn offline data of HESS. Comparative simulations between the ELM-based controller and the rule-based controller are conducted, and the simulation results show that compared to the rule-based controller (RBC), the ELM-based controller reduces the electricity consumption by 3.78% and battery life loss by 6.51%.

Suggested Citation

  • Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1933-:d:159780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Changle Xiang & Yanzi Wang & Sideng Hu & Weida Wang, 2014. "A New Topology and Control Strategy for a Hybrid Battery-Ultracapacitor Energy Storage System," Energies, MDPI, vol. 7(5), pages 1-23, April.
    2. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
    3. Gong, Huiming & Zou, Yuan & Yang, Qingkai & Fan, Jie & Sun, Fengchun & Goehlich, Dietmar, 2018. "Generation of a driving cycle for battery electric vehicles:A case study of Beijing," Energy, Elsevier, vol. 150(C), pages 901-912.
    4. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Hou, Jun & Han, Xuebing & Ouyang, Minggao, 2014. "Energy management strategies comparison for electric vehicles with hybrid energy storage system," Applied Energy, Elsevier, vol. 134(C), pages 321-331.
    5. M. Hadi Amini & Orkun Karabasoglu, 2018. "Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks," Energies, MDPI, vol. 11(1), pages 1-25, January.
    6. Chen, Syuan-Yi & Hung, Yi-Hsuan & Wu, Chien-Hsun & Huang, Siang-Ting, 2015. "Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization," Applied Energy, Elsevier, vol. 160(C), pages 132-145.
    7. Long Cheng & Wei Wang & Shaoyuan Wei & Hongtao Lin & Zhidong Jia, 2018. "An Improved Energy Management Strategy for Hybrid Energy Storage System in Light Rail Vehicles," Energies, MDPI, vol. 11(2), pages 1-15, February.
    8. Song, Ziyou & Zhang, Xiaobin & Li, Jianqiu & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "Component sizing optimization of plug-in hybrid electric vehicles with the hybrid energy storage system," Energy, Elsevier, vol. 144(C), pages 393-403.
    9. Yanzi Wang & Weida Wang & Yulong Zhao & Lei Yang & Wenjun Chen, 2016. "A Fuzzy-Logic Power Management Strategy Based on Markov Random Prediction for Hybrid Energy Storage Systems," Energies, MDPI, vol. 9(1), pages 1-20, January.
    10. Yu Wang & Zhongping Yang & Feng Li, 2018. "Optimization of Energy Management Strategy and Sizing in Hybrid Storage System for Tram," Energies, MDPI, vol. 11(4), pages 1-17, March.
    11. Zhang, Shuo & Xiong, Rui & Sun, Fengchun, 2017. "Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system," Applied Energy, Elsevier, vol. 185(P2), pages 1654-1662.
    12. Chen, Bo-Chiuan & Wu, Yuh-Yih & Tsai, Hsien-Chi, 2014. "Design and analysis of power management strategy for range extended electric vehicle using dynamic programming," Applied Energy, Elsevier, vol. 113(C), pages 1764-1774.
    13. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    14. Fang Zhou & Feng Xiao & Cheng Chang & Yulong Shao & Chuanxue Song, 2017. "Adaptive Model Predictive Control-Based Energy Management for Semi-Active Hybrid Energy Storage Systems on Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manish Meena & Hrishikesh Kumar & Nitin Dutt Chaturvedi & Andrey A. Kovalev & Vadim Bolshev & Dmitriy A. Kovalev & Prakash Kumar Sarangi & Aakash Chawade & Manish Singh Rajput & Vivekanand Vivekanand , 2023. "Biomass Gasification and Applied Intelligent Retrieval in Modeling," Energies, MDPI, vol. 16(18), pages 1-21, September.
    2. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    3. Philip K. Agyeman & Gangfeng Tan & Frimpong J. Alex & Jamshid F. Valiev & Prince Owusu-Ansah & Isaac O. Olayode & Mohammed A. Hassan, 2022. "Parameter Matching, Optimization, and Classification of Hybrid Electric Emergency Rescue Vehicles Based on Support Vector Machines," Energies, MDPI, vol. 15(19), pages 1-23, September.
    4. Jixiang Yang & Yongming Bian & Meng Yang & Jie Shao & Ao Liang, 2021. "Parameter Matching of Energy Regeneration System for Parallel Hydraulic Hybrid Loader," Energies, MDPI, vol. 14(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    2. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    3. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    4. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
    5. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    8. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.
    9. Song, Ziyou & Li, Jianqiu & Hou, Jun & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study," Energy, Elsevier, vol. 154(C), pages 433-441.
    10. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Hu, Jiayi & Li, Jianqiu & Hu, Zunyan & Xu, Liangfei & Ouyang, Minggao, 2021. "Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming," Energy, Elsevier, vol. 215(PA).
    12. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    13. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    14. Wang, Yaxin & Lou, Diming & Xu, Ning & Fang, Liang & Tan, Piqiang, 2021. "Energy management and emission control for range extended electric vehicles," Energy, Elsevier, vol. 236(C).
    15. Hou, Jun & Sun, Jing & Hofmann, Heath, 2018. "Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 212(C), pages 919-930.
    16. Abd-Elhaleem, Sameh & Shoeib, Walaa & Sobaih, Abdel Azim, 2023. "A new power management strategy for plug-in hybrid electric vehicles based on an intelligent controller integrated with CIGPSO algorithm," Energy, Elsevier, vol. 265(C).
    17. Randive, Vaibhav & Subramanian, Shankar C. & Thondiyath, Asokan, 2021. "Design and analysis of a hybrid electric powertrain for military tracked vehicles," Energy, Elsevier, vol. 229(C).
    18. Hong Zhang & Zhuang Xing & Jiajian Song & Qiangqiang Yang, 2018. "Development and Test Application of an Auxiliary Power-Integrated System," Energies, MDPI, vol. 11(1), pages 1-18, January.
    19. Zhu, Tao & Lot, Roberto & Wills, Richard G.A. & Yan, Xingda, 2020. "Sizing a battery-supercapacitor energy storage system with battery degradation consideration for high-performance electric vehicles," Energy, Elsevier, vol. 208(C).
    20. Ashleigh Townsend & Rupert Gouws, 2022. "A Comparative Review of Lead-Acid, Lithium-Ion and Ultra-Capacitor Technologies and Their Degradation Mechanisms," Energies, MDPI, vol. 15(13), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1933-:d:159780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.