IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic35.html
   My bibliography  Save this article

Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China

Author

Listed:
  • Huang, Ying
  • Liao, Cuiping
  • Zhang, Jingjing
  • Guo, Hongxu
  • Zhou, Nan
  • Zhao, Daiqing

Abstract

Cities are key to global greenhouse gas emissions management. To explore urban greenhouse gas peak pathways, a city-level Energy Consumption and Greenhouse Gas Emission Analysis model was developed by using Long-range Energy Alternatives Planning model framework. Using the city of Guangzhou as a case study, this research compiled a overall energy balance sheet of base year and simulated future CO2 emission trends from 2015 to 2030 under three scenarios. Results show that CO2 emissions in Guangzhou will peak around 2023 under the current policy scenario. In order to advance the CO2 emissions peak to 2020, the more stringent emissions-reduction policies and measures need to be adopted under the peaking scenario and enhanced peaking scenario, with the peak emission value of 125–127 Mt CO2e. The industrial sector is the only sector in which CO2 emissions have peaked in Guangzhou, the building sector’s CO2 emissions will not peak by 2030 under any of the three scenarios, while the transportation sector, which will contribute 50 percent of emission reduction potential, is the key to achieve its goal of peaking CO2 emissions on time. In the short term, stringent reduction strategies on the transportation, industrial, and power sectors are needed, including transport mode adjustment, industrial structure adjustment, electrification level improvement, clean-up transformation of thermal power, and energy efficiency improvement. However, in the long term, reduction strategies for the building sector, like energy efficiency improvement and large-scale application of renewable energy, will be essential for Guangzhou.

Suggested Citation

  • Huang, Ying & Liao, Cuiping & Zhang, Jingjing & Guo, Hongxu & Zhou, Nan & Zhao, Daiqing, 2019. "Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:35
    DOI: 10.1016/j.apenergy.2019.113369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919310438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollen, Johannes & van der Zwaan, Bob & Brink, Corjan & Eerens, Hans, 2009. "Local air pollution and global climate change: A combined cost-benefit analysis," Resource and Energy Economics, Elsevier, vol. 31(3), pages 161-181, August.
    2. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    3. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    4. Tsai, Miao-Shan & Chang, Ssu-Li, 2015. "Taiwan’s 2050 low carbon development roadmap: An evaluation with the MARKAL model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 178-191.
    5. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    6. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    7. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    8. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    9. Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
    10. Babiker, Mustafa & Gurgel, Angelo & Paltsev, Sergey & Reilly, John, 2009. "Forward-looking versus recursive-dynamic modeling in climate policy analysis: A comparison," Economic Modelling, Elsevier, vol. 26(6), pages 1341-1354, November.
    11. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    12. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    13. Lin, Jianyi & Cao, Bin & Cui, Shenghui & Wang, Wei & Bai, Xuemei, 2010. "Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China," Energy Policy, Elsevier, vol. 38(9), pages 5123-5132, September.
    14. Victor, Nadejda & Nichols, Christopher & Zelek, Charles, 2018. "The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model," Energy Economics, Elsevier, vol. 73(C), pages 410-425.
    15. Oshiro, Ken & Kainuma, Mikiko & Masui, Toshihiko, 2017. "Implications of Japan's 2030 target for long-term low emission pathways," Energy Policy, Elsevier, vol. 110(C), pages 581-587.
    16. Liu, Qiang & Shi, Minjun & Jiang, Kejun, 2009. "New power generation technology options under the greenhouse gases mitigation scenario in China," Energy Policy, Elsevier, vol. 37(6), pages 2440-2449, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Kılkış, Şiir, 2022. "Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. He, Yong & Liao, Nuo & Lin, Kunrong, 2021. "Can China's industrial sector achieve energy conservation and emission reduction goals dominated by energy efficiency enhancement? A multi-objective optimization approach," Energy Policy, Elsevier, vol. 149(C).
    4. John Zacharias, 2021. "Addressing Global Climate Change With Big Data-Driven Urban Planning Policy," International Journal of E-Planning Research (IJEPR), IGI Global, vol. 10(4), pages 1-16, October.
    5. Guorong Chen & Changyan Liu, 2023. "Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    6. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Valdemaras Makutėnas & Gunta Grīnberga-Zālīte, 2023. "The Impact of Economic Growth and Urbanisation on Environmental Degradation in the Baltic States: An Extended Kaya Identity," Agriculture, MDPI, vol. 13(9), pages 1-25, September.
    7. Xinhua Tong & Shurui Guo & Haiyan Duan & Zhiyuan Duan & Chang Gao & Wu Chen, 2022. "Carbon-Emission Characteristics and Influencing Factors in Growing and Shrinking Cities: Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    8. Concettina Marino & Cosimo Monterosso & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2020. "Analysis of the Reduction of Pollutant Emissions by the Vehicle Fleet of the City of Reggio Calabria Due to the Introduction of Ecological Vehicles," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    9. Liu, S. & Xiao, Q., 2021. "An empirical analysis on spatial correlation investigation of industrial carbon emissions using SNA-ICE model," Energy, Elsevier, vol. 224(C).
    10. He, Yong & Fu, Feifei & Liao, Nuo, 2021. "Exploring the path of carbon emissions reduction in China’s industrial sector through energy efficiency enhancement induced by R&D investment," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Jianyi & Cao, Bin & Cui, Shenghui & Wang, Wei & Bai, Xuemei, 2010. "Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China," Energy Policy, Elsevier, vol. 38(9), pages 5123-5132, September.
    2. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    3. Yang, Dewei & Liu, Dandan & Huang, Anmin & Lin, Jianyi & Xu, Lingxing, 2021. "Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    5. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    6. Lixiao Zhang & Yueyi Feng & Bin Chen, 2011. "Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China," Energies, MDPI, vol. 4(12), pages 1-16, December.
    7. Li, Wenxiang & Bao, Lei & Wang, Luqi & Li, Ye & Mai, Xianmin, 2019. "Comparative evaluation of global low-carbon urban transport," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 14-26.
    8. Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
    9. Miao, Ankang & Yuan, Yue & Wu, Han & Ma, Xin & Shao, Chenyu & Xiang, Sheng, 2024. "Pathway for China's provincial carbon emission peak: A case study of the Jiangsu Province," Energy, Elsevier, vol. 298(C).
    10. Aryanpur, Vahid & Atabaki, Mohammad Saeid & Marzband, Mousa & Siano, Pierluigi & Ghayoumi, Kiarash, 2019. "An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 58-74.
    11. Raluca Suciu & Paul Stadler & Ivan Kantor & Luc Girardin & François Maréchal, 2019. "Systematic Integration of Energy-Optimal Buildings With District Networks," Energies, MDPI, vol. 12(15), pages 1-38, July.
    12. Li, J.S. & Chen, G.Q. & Lai, T.M. & Ahmad, B. & Chen, Z.M. & Shao, L. & Ji, Xi, 2013. "Embodied greenhouse gas emission by Macao," Energy Policy, Elsevier, vol. 59(C), pages 819-833.
    13. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Cheng, Guanhui & Tan, Qian, 2016. "Bayesian interval robust optimization for sustainable energy system planning in Qiqihar City, China," Energy Economics, Elsevier, vol. 60(C), pages 357-376.
    14. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    15. Xi, Fengming & Geng, Yong & Chen, Xudong & Zhang, Yunsong & Wang, Xinbei & Xue, Bing & Dong, Huijuan & Liu, Zhu & Ren, Wanxia & Fujita, Tsuyoshi & Zhu, Qinghua, 2011. "Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China," Energy Policy, Elsevier, vol. 39(10), pages 5999-6010, October.
    16. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    17. Qingduo Mao & Ben Ma & Hongshuai Wang & Qi Bian, 2019. "Investigating Policy Instrument Adoption in Low-Carbon City Development: A Case Study from China," Energies, MDPI, vol. 12(18), pages 1-17, September.
    18. Qunli Wu & Chenyang Peng, 2016. "Scenario Analysis of Carbon Emissions of China’s Electric Power Industry Up to 2030," Energies, MDPI, vol. 9(12), pages 1-18, November.
    19. Verma, Pramit & Kumari, Tanu & Raghubanshi, Akhilesh Singh, 2021. "Energy emissions, consumption and impact of urban households: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.